

μPD78C1x/C1xA/CG14/CP14 8-Bit CMOS Microcomputers With A/D Converter

Description

The family of single-chip microcomputers covered by this data sheet includes the following types:

μPD78C10 μPD78C10A μPD78CG14 μPD78C11 μPD78CP14 μPD78C14A μPD78CP14 μPD78C14A

These microcomputers integrate sophisticated on-chip peripheral functions normally provided by external components. Their internal 16-bit ALU and data paths, combined with a powerful instruction set and addressing, make the devices appropriate in data processing as well as control applications.

The devices integrate a 16-bit ALU, 4K-, 8K-, or 16K-byte ROM, 256-byte RAM, an eight channel A/D converter, a multifunction 16-bit timer/event counter, two 8-bit timers, a USART, and two zero-cross detect inputs on a single die, allowing their use in fast, high-end processing applications. This involves analog signal interface and processing.

The µPD78C1x/C1xA/Cx14 family includes: 4K-, 8K-, and 16K-byte mask ROM devices, embedded with a custom customer program; ROMless devices for use with up to 64K-bytes of external memory; 16K-byte piggyback EPROM device for prototyping; 16K-byte EPROM or OTP ROM devices for prototyping and low-volume production. The µPD78C11A/C12A/C14A also have mask optional pullup resistors available on ports A, B, and C.

Features

- CMOS technology
 - 25 mA operating current (78C10/C10A/C11/C11A/C12A)
 - 30 mA operating current (78C14/C14A)
- Complete single-chip microcomputer
- 16-bit ALU
 - 4K, 8K, or 16K x 8 ROM
 - 256-byte RAM
- □ 44 I/O lines
- Mask optional pullup resistors
 - --- Ports A, B, and C
 - $-\mu$ PD78C11A/C12A/C14A only
- Two zero-cross detect inputs
- □ Two 8-bit timers

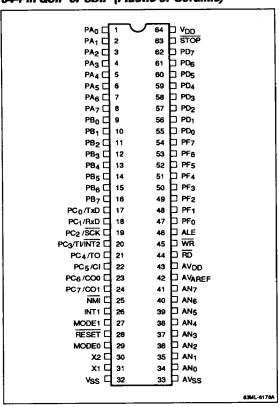
- Expansion capabilities
 - 8085A-like bus
 - 60K-byte external memory address range
- □ Eight-channel, 8-bit A/D converter
 - Autoscan mode
 - Channel select mode
- Full-duplex USART
 - Synchronous and asynchronous
- □ 159 instructions
 - 16-bit arithmetic, multiply, and divide
 - HALT and STOP instructions
- □ 0.8-µs instruction cycle time (15-MHz operation)
- Prioritized interrupt structure
 - Three external
 - --- Eight internal
- Standby function
- □ On-chip clock generator

Ordering Information

Part Number	Package	ROM
μPD78C10CW	64-pin plastic SDIP	ROMless
μPD78C10G-36	64-pin plastic QUIP	
μPD78C10G-1B	64-pin plastic QFP (Resin thickness 2.05 mm)	_
μPD78C10GF-3BE	64-pin plastic QFP (Resin thickness 2.7 mm)	 -
μPD78C1 0 L	68-pin PLCC	_
μPD78C10ACW	64-pin plastic SDIP	ROMless
μPD78C10AGF-3BE	64-pin plastic QFP	
μPD78C10AGQ-36	64-pin plastic QUIP	_
μPD78C10AL	68-pin PLCC	-
μPD78C11 CW-xxx	64-pin plastic SDIP	4K mask ROM
μPD78C11G-xxx-36	64-pin plastic QUIP	-
μPD78C11G-xxx-1B	64-pin plastic QFP (Resin thickness 2.05 mm)	_
μPD78C11GF-xxx-3BE	64-pin plastic QFP (Resin thickness 2.7 mm)	_
μPD78C11L-xxx	68-pin PLCC	_

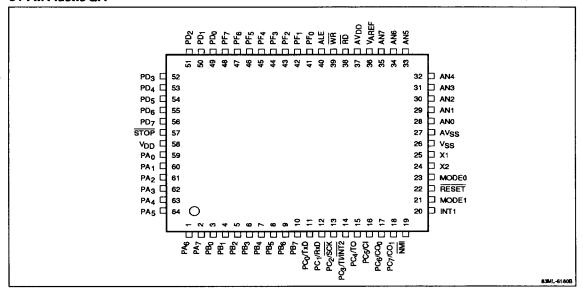
50246

Ordering Information (cont)

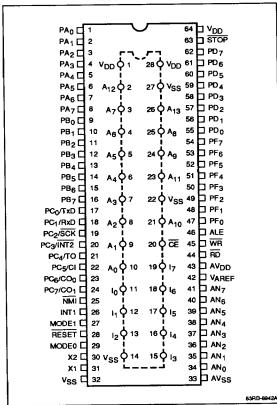

Part Number	Package	ROM		
μPD78C11ACW-xxx	64-pin plastic SDIP	4K mask ROM		
μPD78C11AGF-xxx-3BE	64-pin plastic QFP	-		
μPD78C11AGQ-xxx-36	64-pin plastic QUIP	-		
μPD78C11AL-xxx	68-pin PLCC			
μPD78C12ACW-xxx	64-pin plastic SDIP	8K mask ROM		
μPD78C12AGF-xxx-3BE	64-pin plastic QFP			
μPD78C12AG-xxx-36	64-pin plastic QUIP	_		
μPD78C12AL-xxx	68-pin PLCC			
μPD78C14CW-xxx	64-pin plastic SDIP	16K mask		
μPD78C14G-xxx-36	64-pin plastic QUIP	- ROM		
μPD78C14G-xxx-1B	64-pin plastic QFP (Resin thickness 2.05 mm)			
μPD78C14GF-xxx-3BE	64-pin plastic QFP (Resin thickness 2.7 mm)	_		
μPD78C14L-xxx	68-pin PLCC			
μPD78C14AG-xxx-AB8	64-pin plastic QFP (Interpin pitch 0.8 mm)	16K mask ROM		
μPD78CG14E	64-pin ceramic piggyback QUIP	4/8/16K piggyback EPROM		
μPD78CP14CW	64-pin plastic SDIP	16K OTP ROM		
μPD78CP14G-36	64-pin plastic QUIP	_		
μPD78CP14GF-3BE	64-pin plastic QFP	_		
μPD78CP14L	68-pin PLCC	-		
μPD78CP14DW	64-pin ceramic SDIP with window	16K UV EPROM		
μPD78CP14R	64-pin ceramic QUIP with window			

Notes:

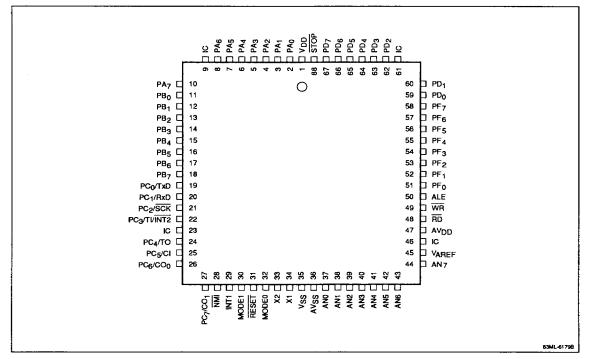
(1) xxx indicates ROM code suffix.


Pin Configurations

64-Pin QUIP or SDIP (Plastic or Ceramic)



64-Pin Plastic QFP



64-Pin Ceramic Piggyback QUIP

68-Pin PLCC

μPD78C1x/C1xA/CG14/CP14

Pin Identific	cation
Symbol	Function
ALE	Address latch enable output
ANO-AN7	A/D converter analog inputs 0-7
INT1	Interrupt request 1 input
MODE0	Mode 0 input; I/O memory output
MODE1	Mode 1 input
NMI	Nonmaskable interrupt input
PA ₀ -PA ₇	Port A I/O
PB ₀ -PB ₇	Port B I/O
PC ₀ /TxD	Port C I/O line 0; transmit data output
PC ₁ /R _x D	Port C I/O line 1; receive data input
PC ₂ /SCK	Port C I/O line 2; serial clock I/O
PC ₃ /Ti/NT2	Port C I/O line 3; timer input; interrupt request 2 input
PC ₄ /TO	Port C I/O line 4; timer output
PC ₅ /CI	Port C I/O line 5; counter input
PC ₆ , PC ₇ / CO ₀ ,CO ₁	Port C I/O lines 6, 7; counter outputs 0, 1
PD ₀ -PD ₇	Port D I/O; expansion memory address, data bus (bits AD ₀ -AD ₇)
PF ₀ -PF ₇	Port F I/O; expansion memory address, (bits AB ₈ -AB ₁₅)
RD	Read strobe output
RESET	Reset input
STOP	Stop mode control input
VAREF	A/D converter reference voltage
WR	Write strobe output
X1, X2	Crystal connections 1, 2
AV _{DD}	A/D converter power supply voltage
AV _{SS}	A/D converter power supply ground
V _{DD}	5 V power supply
V _{SS}	Ground
IC	Internal connection

Pin Identification μPD78CG14E Upper EPROM Pins

Symbol	Pin	Function			
A ₀ -A ₁₃	2-10, 21 23-26	14-bit program counter (PC ₀ -PC ₁₃) output used as 27C256/27C256A address signals			
CE 20		Chip enable signal for 27C256/27C256A; high- level output (during STOP or HALT), otherwise, low-level output			
10-17	11-13 15-19	8-bit input of data read from 27C256/27C256A			
V _{DD}	1	Same potential as lower V _{DD} pin; V _{CC} power supply line (V _{PP}) for 27C256/27C256A			
V _{DD}	28	Same potential as lower V _{DD} pin; V _{CC} power supply line (V _{CC}) for 27C256/27C256A			
V _{SS}	14	Same potential as lower V _{SS} pin connected to the 27C256/27C256A GND pin			
V _{SS}	22	Same potential as lower V _{SS} pin; OE signal (always low) input to 27C256/27C256A			
V _{SS}	27	Same potential as lower V _{SS} pin; A ₁₄ signal (always low) input to 27C256/27C256A			

PIN FUNCTIONS

ALE (Address Latch Enable)

The ALE output is used to latch the address of PD₀-PD₇ into an external latch.

ANO-AN7 (Analog Inputs)

These are the eight analog inputs to the A/D converter. AN4-AN7 can also be used as a digital input for falling edge detection.

CI (Counter Input)

External pulse input to timer/event counter.

CO₀, CO₁ (Counter Outputs)

Programmable waveform outputs based on timer/event counter.

INT1 (Interrupt Request 1)

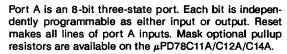
INT1 is a rising edge triggered, maskable interrupt input. It is also an ac-input, zero-cross detection terminal.

If the optional pullup resistor is specified for this pin on the μ PD78C11A/C12A/C14A, the zero-cross detection circuitry will not function.

INT2 (Interrupt Request 2)

INT2 is a falling edge triggered, maskable interrupt input. It is also an ac-input, zero-cross detection terminal.

MODE0, MODE1 (Mode 0, 1)


The MODE0 and MODE1 inputs select the amount of external memory. MODE0 outputs the $\overline{\text{IO}}$ signal, and MODE1 outputs the $\overline{\text{M1}}$ signal. An external pullup resistor to V_{DD} is required if the input is to be a logic high.

The value of this pullup resistor, R, is dependent on t_{CYC} and is calculated as follows: R in $K\Omega$ is $4 \le R \le 0.4 \, t_{CYC}$ where t_{CYC} is in ns units.

NMI (Nonmaskable Interrupt)

Falling edge, Schmitt triggered nonmaskable interrupt input.

PA₀-PA₇ (Port A)

PB₀-PB₇ (Port B)

Port B is an 8-bit three-state port. Each bit is independently programmable as either input or output. Reset makes all lines of port B inputs. Mask optional pullup resistors are available on the μPD78C11A/C12A/C14A.

PC₀-PC₇ (Port C)

Port C is an 8-bit three-state port. Each bit is independently programmable as either input or output. Alternatively, the lines of port C can be used as control lines for the USART, interrupts, and timer. Reset makes all lines of port C inputs. Mask optional pullup resistors are available on the μ PD78C11A/C12A/C14A.

PD₀-PD₇ (Port D)

Port D is an 8-bit three-state port. It can be programmed as either 8 bits of input or 8 bits of output. When external expansion memory is used, port D acts as the multiplexed address/data bus.

PF₀-PF₇ (Port F)

Port F is an 8-bit three-state port. Each bit is independently programmable as either input or output. When external expansion memory is used, port F outputs the high-order address bits.

RD (Read Strobe)

The three-state \overline{RD} output goes low to gate data from external devices onto the data bus. \overline{RD} goes high during reset

RESET (Reset)

When the Schmitt-triggered RESET input is brought low, it initializes the device.

RxD (Receive Data)

Serial data input terminal.

SCK (Serial Clock)

Output for the serial clock when internal clock is used. Input for serial clock when external clock is used.

STOP (STOP Mode Control Input)

A low-level input on STOP (Schmitt-triggered input) stops the system clock oscillator.

Ti (Timer Input)

Timer input terminal.

TO (Timer Output)

The output of TO is a square wave with a frequency determined by the timer/counter.

TxD (Transmit Data)

Serial data output terminal.

VAREF (A/D Converter Reference)

V_{AREF} sets the upper limit for the A/D conversion range.

WR (Write Strobe)

The three-state WR output goes low to indicate that the data bus holds valid data. It is a strobe signal for external memory or I/O write operations. WR goes high during reset.

X1, X2 (Crystal Connections)

X1 and X2 are the system clock crystal oscillator terminals. X1 is the input for an external clock.

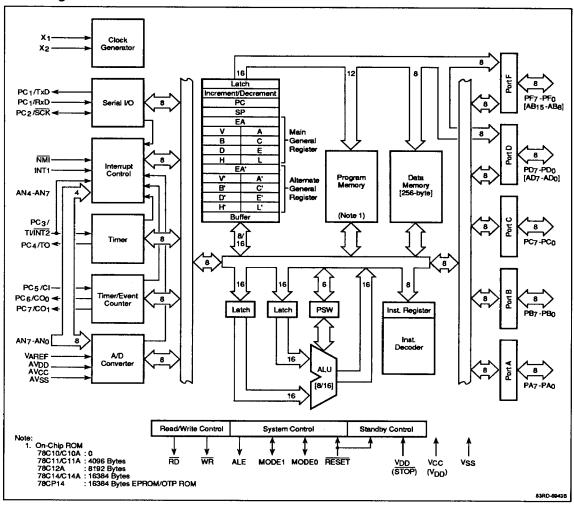
AV_{DD} (A/D Converter Power)

This is the power supply voltage for the A/D converter.

AV_{SS} (A/D Converter Power Ground)

 ${\rm AV}_{\rm SS}$ is the ground potential for the A/D converter power supply.

V_{DD} (Power Supply)


V_{DD} is the +5-volt power supply.

V_{SS} (Ground)

Ground potential.

Block Diagram

FUNCTIONAL DESCRIPTION

Memory Map

The μ PD78C1x/C1xA/Cx14 family can directly address up to 64K bytes of memory. Except for the on-chip ROM (or PROM) and RAM (FF00H-FFFFH), any memory location can be used as ROM or RAM. The memory map, figure 1, defines the 0 to 64K-byte memory space for the μ PD78C1x/C1xA/Cx14 family.

The μ PD78CG14 and the μ PD78CP14 can be programmed in software to have 4K, 8K, or 16K bytes of internal program memory. This programming is transparent to the ROM-based device, allowing easy transfer of code to a ROM-based device.

Input/Output

The μ PD78C1x/C1xA/Cx14 family has 44 digital I/O lines, five 8-bit ports (ports A, B, C, D, F), and four digital input lines (AN4-AN7).

Analog Input Lines. AN0-AN7 are configured as analog input lines for the on-chip A/D converter. Lines AN4-AN7 can be used as digital input lines for falling edge detection.

Port A, Port B, Port C, Port F. Each line of these ports can be individually programmed as an input or output. When used as I/O ports, all have latched outputs and high-impedance inputs. On the μPD78C11A/C12A/C14A, mask optional pullup resistors are available for ports A, B, and C.

Port D. Port D can be programmed as a byte input or a byte output.

Control Lines. Under software control, each line of port C can be configured individually as a control line for the serial interface, timer, and timer/counter or as an I/O port.

Memory Expansion. In addition to the single-chip operation mode, the μ PD78C1x/C1xA/Cx14 family has four memory expansion modes. Under software control, port D can provide a multiplexed low-order address and data bus; port F can provide a high-order address bus. Table 1 shows the relation between memory expansion modes and the pin configurations of port D and port F.

Table 1. Memory Expansion Modes and Port Configurations

Memory Expansion	Port	Port Configuration	
None	Port D	I/O port	
	Port F	I/O port	
256 bytes	Port D	Multiplexed address/ data bus	
	Port F	I/O port	
4K bytes	Port D	Multiplexed address, data bus	
	Port F (PF ₀ -PF ₃)	Address bus	
	Port F (PF ₄ -PF ₇)	I/O port	
16K bytes	Port D	Multiplexed address/ data bus	
	Port F (PF ₀ -PF ₅)	Address bus	
	Port F (PF ₆ -PF ₇)	I/O port	
60K bytes	Port D	Multiplexed address/ data bus	
	Port F	Address bus	

Timers

The two 8-bit timers may be programmed independently or cascaded as a 16-bit timer. The timer can be software set to increment at intervals of four machine cycles (0.8 μ s at 15-MHz operation) or 128 machine cycles (25.6 μ s at 15-MHz), or to increment on receipt of a pulse at TI. Figure 2 is the block diagram for the timer.

Timer/Event Counter

The 16-bit multifunctional timer/event counter (figure 3) can be used for the following operations:

- Interval timer
- External event counter
- Frequency measurement
- · Pulse width measurement
- Programmable frequency and duty cycle waveform output
- Single pulse output

8-Bit A/D Converter

- 8 input channels
- 4 conversion result registers
- 2 powerful operation modes
 - Autoscan mode
 - Channel select mode
- Successive approximation technique
- Absolute accuracy: 0.6% FSR ± 1/2 LSB
- Conversion range: 0 to 5 V
- Conversion time: 38.4 μs
- Interrupt generation

Figure 1. Memory Map

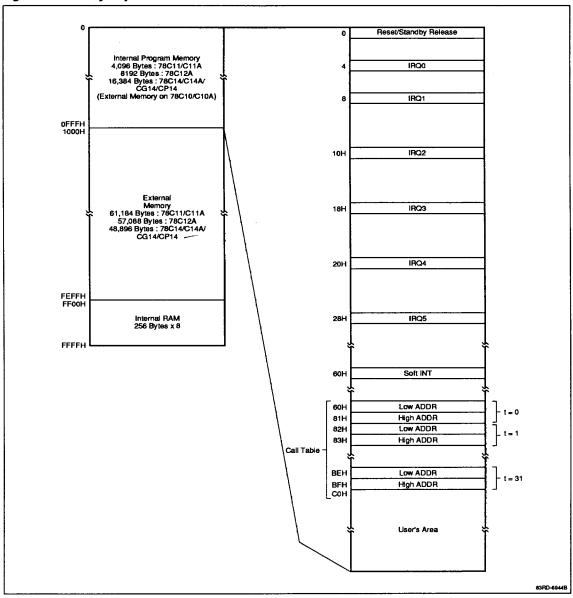


Figure 2. Timer Block Diagram

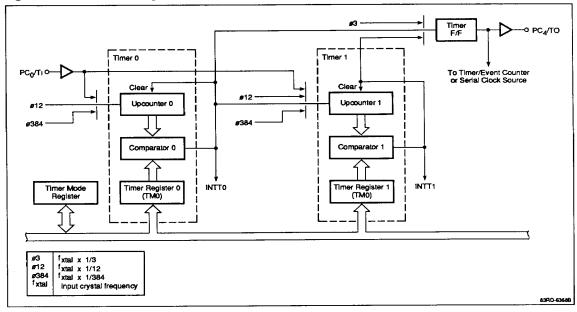
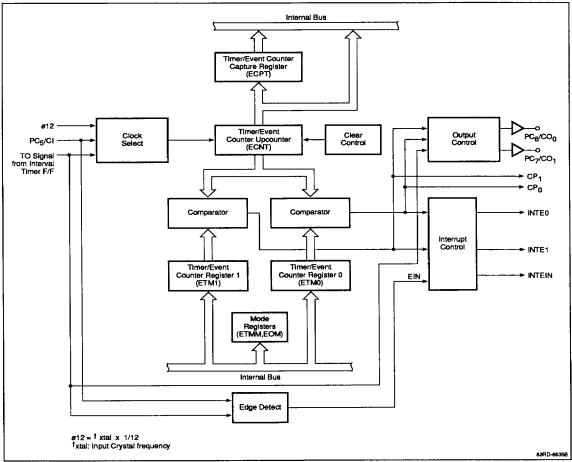



Figure 3. Block Diagram for the Timer/Event Counter

Analog/Digital Converter

The µPD78C1x/C1xA/Cx14 family features an 8-bit, highspeed, high accuracy A/D converter. The A/D converter is made up of a 256-resistor ladder and a successive approximation register (SAR). There are four conversion result registers (CR0-CR3).

The eight-channel analog input may be operated in either of two modes. In the select mode, the conversion value of one analog input is sequentially stored in CR0-CR3. In the scan mode, either the upper four channels or the lower four channels may be specified. Then those

four channels will be consecutively selected and the conversion results stored sequentially in the four conversion result registers.

Figure 4 is the block diagram for the A/D converter. To stop the operation of the A/D converter and thus reduce power consumption, set $V_{ABEF}=0$ V.

Interrupt Structure

There are 12 interrupt sources in the µPD78C1x/C1xA/Cx14 family of chips. Three are external interrupts and nine are internal. Table 2 shows 11 interrupt sources divided into seven priority levels where IRQ0 is the highest and IRQ6 is the lowest. See figure 5.

Figure 4. A/D Converter Block Diagram

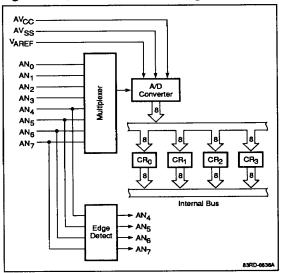
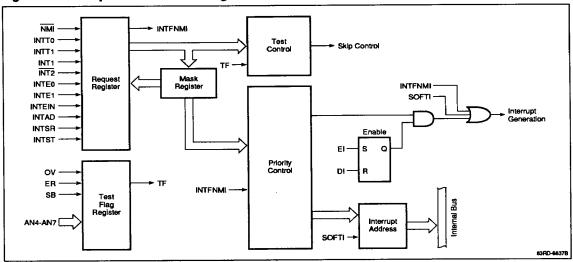



Figure 5. Interrupt Structure Block Diagram

Standby Functions

The μPD78C1x/C1xA/Cx14 family has two standby modes: HALT and STOP. The HALT mode reduces power consumption to 50% of normal operating requirements, while maintaining the contents of on-chip registers, RAM, and control status. The system clock and on-board peripherals continue to operate, but the CPU stops executing instructions. The HALT mode is initiated by executing the HLT instruction. The HALT mode can be released by any nonmasked interrupt or by RESET.

The STOP mode reduces power consumption to less than 0.1% of normal operating requirements. There are two STOP modes: type A and type B.

Type A is initiated by executing a STOP instruction. If V_{DD} is held above 2.5 V, the on-board RAM is saved. The oscillator is stopped. The STOP mode can be released by an input on $\overline{\text{NMI}}$ or $\overline{\text{RESET}}$. The user can program oscillator stabilization time up to 52.4 ms via timer 1. By checking the standby flag (SB), the user can determine whether the processor has been in the standby mode or has been powered up.

Type B is initiated by inputting a low level on the STOP input. The RAM contents are saved if V_{DD} is held above 2.5 V. The oscillator is stopped. The STOP mode is

released by raising STOP to a high level. The oscillator stabilization time is fixed at 52.4 ms; 52.4 ms after STOP is raised, instruction execution will automatically begin at location 0. You can increase the stabilization time by holding RESET low for the required time period.

Universal Serial Interface

The serial interface can operate in one of three modes: synchronous, asynchronous, and I/O interface. The I/O interface mode transfers data MSB first, for easy interfacing to certain NEC peripheral devices. Synchronous and asynchronous modes transfer data LSB first. Synchronous operation offers two modes of data reception: search and nonsearch. In the search mode, data is transferred one bit at a time from the serial register to the receive buffer. This allows a software search for a sync character. In the nonsearch mode, data transfer from the serial register to the transmit buffer occurs eight bits at a time. Figure 6 shows the universal serial interface block diagram.

Zero-Crossing Detector

The INT1 and INT2 terminals (used common to TI and PC₃) can detect the zero-crossing point of low-frequency AC signals. When driven directly, these pins respond as a normal digital input. Figure 7 shows the zero-crossing detection circuitry.

Table 2 Interrupt Sources

Interrupt Request Interrupt Address		Type of Interrupt	Internal/External	
IRQ0	4	NMI (Nonmaskable interrupt)	External	
IRQ1	8	INTT0, INTT1 (Coincidence signals from timers 0, 1)	Internal	
IRQ2	16	INT1, INT2 (Maskable interrupts)	External	
IRQ3	24	INTE0, INTE1 (Coincidence signals from timer/ event counter)	Internal	
IRQ4 32		INTEIN (Falling signal of CI or TO into the timer/ event counter)	Internal or External	
		INTAD (A/D converter interrupt)	Internal	
IRQ5 40		INTSR (Serial receive interrupt)	Internal	
		INST (Serial send interrupt)	<u>-</u>	
IRQ6	96	SOFTI instruction	Internal	

Figure 6. Universal Serial Interface Block
Diagram

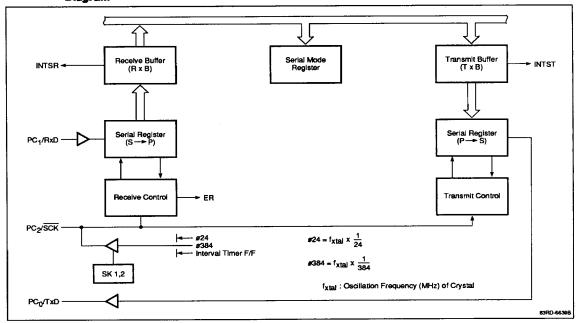
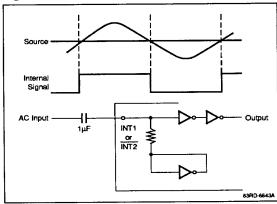



Figure 7. Zero-Crossing Detection Circuit

The zero-crossing detection capability allows you to make the 50-60 Hz power signal the basis for system timing and to control voltage phase-sensitive devices.

To use the zero-cross detection mode, an AC signal of 1.0 to 1.8 V (peak-to-peak) and a maximum frequency of 1 kHz is coupled through an external capacitor to the INT1 and $\overline{\text{INT2}}$ pins.

For the INT1 pin, the internal digital state is sensed as a 0 until the rising edge crosses the average DC level, when it becomes a 1 and an INT1 interrupt is generated.

For the $\overline{\text{INT2}}$ pin, the state is sensed as a 1 until the falling edge crosses the average DC level, when it becomes a 0 and $\overline{\text{INT2}}$ is generated.

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

T _A = 25°C	
Power supply voltage, V _{DD}	-0.5 to +7.0 V
Power supply voltage, AV _{DD}	AV _{SS} to V _{DD} +0.5 V
Power supply voltage, AVSS	-0.5 to +0.5 V
Power supply voltage, V _{PP} (µPD78CP14 only)	-0.5 to +13.5
Input voltage, V _I	-0.5 to V _{DD} +.5 V
STOP pin (µPD78CP14 only)	-0.5 to +13.5 V
Output voltage, V _O	-0.5 to V _{DD} +.5 V
Output current, low; I _{OL} Each output pin Total	4.0 mA 100 mA
Output current, high; I _{OH} Each output pin Total	–2.0 mA –50 mA
Reference input voltage, VAREF	-0.5 to AV _{DD} +0.3 V
Operating temperature, T _{OPR} f _{XTAL} ≤ 15 MHz	-40 to +85°C
Storage temperature, T _{STG}	-65 to +150°C

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Capacitance

 $T_A = 25^{\circ}C; V_{DD} = V_{SS} = 0 \text{ V}$

Parameter	Symbol	Max	Unit	Conditions
Input capacitance	CI	10	рF	f _c = 1 MHz;
Output capacitance	Co	20	рF	unmeasured pins returned to 0 V
I/O capacitance	C _{IO}	20	рF	

μPD78C1x/C1xA/CG14/CP14

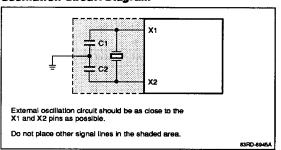
Oscillation Characteristics

 $\begin{array}{l} T_A = -40 \text{ to } +85^{\circ}\text{C}; \ V_{DD} = \text{AV}_{DD} = 5 \ \text{V} \pm 10\% \ (\pm5\% \ \mu\text{PD78CP14}); \\ V_{SS} = \text{AV}_{SS} = 0 \ \text{V}; \ V_{DD} - 0.8 \ \text{V} \leq \text{AV}_{DD} \leq \text{V}_{DD}; \ 3.4 \ \text{V} \leq \text{V}_{AREF} \leq \text{AV}_{DD} \\ \end{array}$

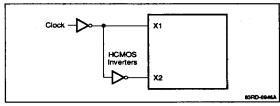
Resonator	Recommended Circuit	Parameter	Min	Тур	Max	Unit	Conditions
Ceramic resonator	(Note 3)	Oscillation frequency (f _{XX})	4		15	MHz	A/D converter not used
(Note 1) or XTAL (Note 2)			5.8		15	MHz	A/D converter used
(14010 2)			6		15	MHz	μPD78CP14 only
External clock	(Note 4)	X1 input frequency (f _X)	4		15	MHz	A/D converter not used
			5.8		15	MHz	A/D converter used
			6		15	MHz	μPD78CP14 only
		X1 input, rise, fall time (t _r , t _f)	0		20	ns	
		X ₁ input low- and high-level	20	-	250	ns	
	width (t _d	width ($t_{\phi L}$, $t_{\phi H}$)	20		167	ns	μPD78CP14

Notes:

- Refer to the Resonator and Capacitance Requirements table for the recommended ceramic resonators.
- (2) For XTAL, the following external capacitances are recommended: C1 = C2 = 10 pF
- (3) For XTAL, see the Recommended XTAL or Ceramic Resonator Oscillation Circuit Diagram.
- (4) See the following recommended external clock diagram.


When using an external crystal, it should be a parallel-resonant, fundamental mode, "AT cut" crystal. Capacitors C1 and C2 are required for frequency stability. The values of C1 and C2 (C1 = C2) can be calculated from the load capacitance (C_1), specified by the crystal manufacturer:

$$C_L = \frac{C1 \times C2}{C1 + C2} + C_S$$


Where C_S is any stray capacitance in parallel with the crystal such as the μ PD78C10, μ PD78C11, or μ PD78C14 input capacitance between X1 and X2.

Recommended XTAL or Ceramic Resonator Oscillation Circuit Diagram

Recommended External Clock Diagram

Resonator and Capacitance Requirements

T_A = -40 to +85°C

Manufacturer	Product Number	C1, C2 (pF)	Conditions
Murata	CSA15.0MX3	22	μPD78C10, 78C11, 78C14,
	CSA10.0MT	30	78C14A, 78CG14
	CST10.0MT	Not required	-
	CSA6.00MG	30	-
	CST6.00MG	Not required	-
	CSA12.0MT	30	Applies to all μPD78C1x/C1xA/CG14
	CST12.0MT	Not required	-
	CSA15.00MX001	15	μPD78C10A/78C11A/78C12A
	CSA7.37MT	30	-
	CST7.37MT	Not required	-
TDK	FCR12.0MC	Not required	μPD78C10/78C11/78C14/ 78C14A/78CG14

μPD78C1x/C1xA/CG14/CP14

	Characteristics			
T _A =	-40° to +85°C; V _{DD} =	+5.0 V ±10%; V _{DD} =	+5.0 V ± 5% (μPD78C14 only); V _{SS} ≠ 0 V

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage, low	V _{IL1}	0		8.0	V	All except Note 1 inputs
	V _{IL2}	0		0.2 V _{DD}	V	Note 1 inputs
input voltage, high	V _{IH1}	2.2		V _{DD}	٧	All except X1, X2, and Note 1 inputs
	V _{IH2}	0.8 V _{DD}		V _{DD}	V	X1, X2, and Note 1 inputs
Output voltage, low	V _{OL}			0.45	٧	I _{OL} = 2.0 mA
Output voltage, high	V _{OH}	V _{DD} -1.0			٧	l _{OH} = 1.0 mA
		V _{DD} -0.5			٧	I _{OH} = -100 μA
Data retention voltage	V _{DDDR}	2.5			٧	STOP mode
Input current	111			±200	μА	INT1 (Note 2); TI (PC ₃) (Note 3); $0 \text{ V} \leq \text{V}_1 \leq \text{V}_{DD}$
Input current (μPD78CG14 only)	l ₁₂			±200	μА	INT1 (Note 2); TI (PC ₃) (Note 3); $0 \text{ V} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{DD}}$
Input current (µPD78CG14 only)	l _{I3}			-300	μА	I_0-I_7 (upper input pin); $V_1 = 0$
Input leakage current	ILI			±10	μА	All except INT1, TI (PC ₃), $0 \text{ V} \leq \text{V}_1 \leq \text{V}_{DD}$
Output leakage current	l _{LO}			±10	μА	0 V ≤ V _O ≤ V _{DD}
AV _{DD} supply current	Al _{DD1}		0.5	1.3	mA	f = 15 MHz
	Al _{DD2}		10	20	μΑ	STOP mode
V _{DD} supply current	l _{DD1}		13	25	mA	Normal operation; f = 15 MHz; (μPD78C10/C10A/C11/C11A/C12A only)
	I _{DD2}		7	13	mA	HALT mode; f = 15 MHz; (μPD78C10/C10A/C11/C11A/C12A only)
	l _{DD3}		16	30	mA	Normal operation; f = 15 MHz (μPD78C14/C14A/CG14)
	I _{DD4}			32	mA	Normal operation; f = 15 MHz; (μPD78CP14 only)
	I _{DD5}		8	15	mA	HALT mode; f = 15 MHz; (μPD78C14/C14A/CG14/CP14 only)
Data retention current	1 _{DDDR}		1	15	μА	V _{DDDR} = 2.5 V (Note 4)
				300		(μPD78CP14 only-Note 4)
			10	50	μА	V _{DDDR} = 5.0 V ±10% (Note 4)
				1	mA	(µPD78CP14 only-Note 4)
Pullup resistor	R _L	17	27	75	KΩ	Port A, B, C; $3.5 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}; \text{ V}_{I} = 0^{\circ}$ (μ PD78C11A/C12A/C14A only)

Notes:

⁽¹⁾ Inputs RESET, STOP, NMI, SCK, INTP1, TI, and AN4-AN7.

⁽²⁾ Assuming ZCM register is set to self-bias.

⁽³⁾ Assuming ZCM register is set to self-bias and the MCC register is set to control mode.

⁽⁴⁾ Hardware/software STOP mode and assuming ZCM register is set to self-bias not selected.

Serial	0	per	at	ion
--------	---	-----	----	-----

Parameter	Symbol	Min	Max	Unit	Conditions
SCK cycle time	t _{CYK}	0.8		μз	SCK input (Notes 1, 3)
		0.4		μз	SCK input (Note 2)
		1.6		μз	SCK output (Note 3)
SCK width low	[‡] KKL	335		ns	SCK input (Notes 1, 3)
		160		ns	SCK input (Note 2)
		700		ns	SCK output (Note 3)
SCK width high	҈ккн	335		ns	SCK input (Notes 1, 3)
		160		ns	SCK input (Note 2)
		700		ns	SCK output (Note 3)
RxD setup time to SCK ↑	^t RXK	80		ns	(Note 1)
RxD hold time after SCK↑	[‡] KRX	80		ns	(Note 1)
SCK ↓ TxD delay time	tктх		210	ns	(Note 1)

Notes:

(1) 1 x baud rate in synchronous or I/O interface mode.

(3) $f_{XTAL} = 15 MHz$.

(2) 16 x baud rate or 64 x baud rate in asynchronous mode.

Zero-Cross Characteristics

Parameter	Symbol	Min	Max	Unit	Condition
Zero-cross detection input	V _{ZX}	1	1.8	VAC _{p-p}	AC coupled 60 Hz sine wave
Zero-cross accuracy	A _{ZX}		±135	mV	
Zero-cross detection input frequency	f _{ZX}	0.05	1	kHz	

AC Characteristics (cont) $T_A = -40^{\circ} \text{ to } +85^{\circ}\text{C}; V_{DD} = AV_{DD} = +5.0 \text{ V} \pm 10\% (\pm 5\% \text{ on } \mu \text{PD78CP14}); V_{SS} = 0 \text{ V}$

Parameter	Symbol	Min	Max	Unit	Conditions
RESET pulse width high, low	t _{RSH} , t _{RSL}	10		μs	
NMI pulse width high, low	tnih, tnih	10		μs	
X1 input cycle time	tcyc	(66)	250	ns	
			167	ns	(Note 1)
Address setup to ALE ↓	tAL	30		ns	(Notes 2, 3)
Address hold to ALE↓	t _{LA}	35	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ns	(Notes 2, 3)
Address to RD ↓ delay time	t _{AR}	100		ns	(Notes 2, 3)
RD ↓ to address floating	t _{AFR}		20	ns	(Note 2)
Address to data input	t _{AD}		250	ns	(Notes 2, 3)
ALE ↓ to data input	t _{LDR}		135	ns	(Notes 2, 3)
RD ↓ to data input	t _{RD}		120	ns	(Notes 2, 3)
ALE ↓ to RD ↓ delay time	t _{LR}	15		ns	(Notes 2, 3)
Data hold time RD ↑	t _{RDH}	0		ns	(Note 2)
RD ↑ to ALE ↑ delay time	t _{RL}	80		ns	(Notes 2, 3)
RD width low	t _{RR}	215		ns	Data read (Notes 2, 3)
		415	*	ns	Opcode fetch (Notes 2, 3

μPD78C1x/C1xA/CG14/CP14

AC Characteristics (cont)

Parameter	Symbol	Min	Max	Unit	Conditions
ALE width high	¹u.	90		ns	(Notes 2, 3)
M1 setup time to ALE↓	tML	30		ns	(Note 3)
M1 hold time after ALE ↓	tLM	35		ns	(Note 3)
O/M setup time to ALE ↓	tlL	30		ns	(Note 3)
O/M hold time after ALE ↓	tLI	35		ns	(Note 3)
Address to WR ↓ delay	t _{AW}	100		ns	(Notes 2, 3)
ALE ↓ to data output	^t LDW		180	ns	(Notes 2, 3)
WR ↓ to data output	t _{WD}		100	ns	(Note 2)
ALE ↓ to WR ↓ delay time	tuv	15		ns	(Notes 2, 3)
Data setup time to ₩R ↑	t _{DW}	165		ns	(Notes 2, 3)
Data hold time to WR↑	twoH	60		ns	(Notes 2, 3)
WR ↑ to ALE ↑ delay time	t _{WL}	80		ns	(Notes 2, 3)
WR width low	tww	215		ns	(Notes 2, 3)
Address to data input	tacc		250	ns	(Notes 2, 3)
Data hold time from address	t _{IH}	0		ns	(Note 2)

Notes:

- (1) Applies to μPD78CP14 only.
- (2) Load capacitance C_L = 150 pF.

(3) Values are for 15-MHz operation. For operation at other frequencies, refer to the table called Bus Timing Depending on $t_{
m CYC}$.

A/D Converter Characteristics

 $T_A = -40^{\circ} \cdot \text{to} + 85^{\circ}\text{C}; V_{DD} = +5.0 \text{ V} \pm 10\% (\pm 5\% \text{ on } \mu\text{PD78CP14}); V_{SS} = AV_{SS} 0 \text{ V};$

 $V_{DD} = 0.5 \text{ V} \leq \text{AV}_{DD} \leq V_{DD}$; $3.4 \text{ V} \leq V_{AREF} \leq \text{AV}_{DD}$

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Resolution		8			bits	
Absolute accuracy (Note 1)				±0.4	%FSR	$T_A = -10 \text{ to } +70^{\circ}\text{C}$; 66 ns $\leq t_{CYC} \leq 170 \text{ ns}$; 4.0 V $\leq V_{AREF} \leq AV_{DD}$
				±0.6	%FSR	66 ns ≤ t _{CYC} ≤ 170 ns; 4.0 V ≤ V _{AREF} ≤ AV _{DD}
		_		±0.8	%FSR	66 ns ≤ t _{CYC} ≤ 170 ns; 3.4 V ≤ V _{AREF} ≤ AV _{DC}
Conversion time	tCONV	576			tcyc	66 ns ≤ t _{CYC} ≤ 110 ns
		432			tcyc	110 ns ≤ t _{CYC} ≤ 170 ns
Sampling time	t _{SAMP}	96			tcyc	66 ns ≤ t _{CYC} ≤ 110 ns
		72			tcyc	110 ns ≤ t _{CYC} ≤ 170 ns
Analog input voltage	VIAN	0		VAREF	V	
Analog input impedance	R _{AN}		1000		МΩ	
Reference voltage	VAREF	3.4		AV _{DD}	٧	
V _{AREF} current	IAREF1		1.5	3.0	mA	Operation mode
	l _{AREF2}		0.7	1.5	mA	STOP mode
AV _{DD} supply current	Al _{DD1}		0.5	1.3	mA	Operation mode
	Al _{DD2}		10	20	μΑ	STOP mode

Notes:

- (1) Quantizing error (±1/2 LSB) is not included.
- (2) FSR = Full-scale resolution.

5-24

Bus 1	ſiming	Depend	ient	on '	tcyk
-------	--------	--------	------	------	------

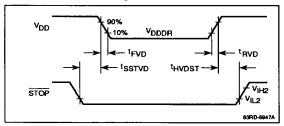
Symbol	Min/Max (ns)	Calculation Formula
t _{TIH} , t _{TIL}	Min	6T (TI input - PC ₃)
t _{Cl1H} , t _{Cl1L} (Note 2)	Min	6T (TI input - PC ₅)
t _{Cl2H} , t _{Cl2L} (Note 3)	Min	48T (TI input - PC ₅)
t _{11H} , t _{11L}	Min	36T (INT1)
t _{I2H} , t _{I2L}	Min	36T (INT2)
tanh, tanl	Min	36T (AN4-AN7)
t _{AL}	Min	2T - 100
t _{l,A}	Min	T – 30
t _{AR}	Min	3T – 100
t _{AD}	Max	7T – 220
t _{LDR}	Max	5T 200
t _{RD}	Max	4T – 150
t ∟R	Min	T – 50
t _{RL}	Min	2T 50
t _{RR}	Min	4T 50 (Data read)
	Min	7T - 50 (Opcode fetch)
tu.	Min	2T – 40
t _{ML}	Min	2T – 100
t _{LM}	Min	T – 30

D
0
)
0
K input) (Note 1)
K output)
(SCK input) (Note 1)
00 (SCK output)
(SCK input) (Note 1)
00 (SCK output)

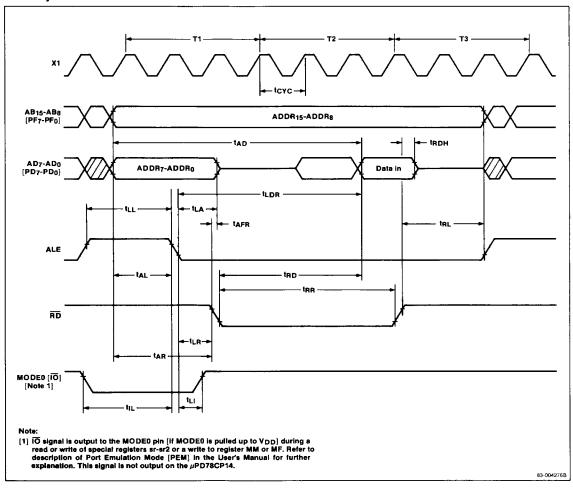
Notes:

- (1) 1 x baud rate in synchronous or I/O interface mode; $T = t_{CYC} = 1/f_{XTAL}$.
 - The items not included in this list are independent of oscillator frequency (f_{XTAI}).
- (2) Event counter mode.
- (3) Pulse width measurement mode.

Data Memory STOP Mode Data Retention Characteristics

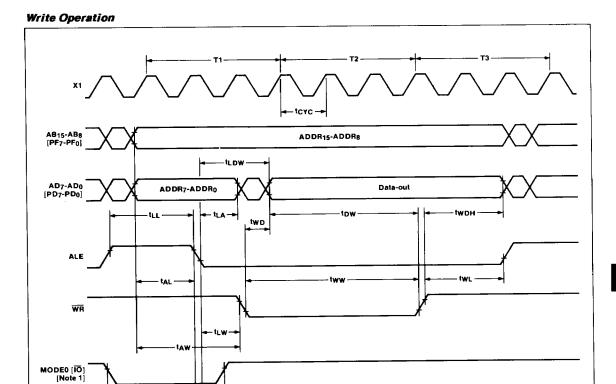

 $T_A = -40 \text{ to } 85^{\circ}\text{C}$

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Data retention power supply voltage	V _{DDDR}	2.5		5.5	٧	
Data retention power supply current	IDDDR		1	15	μА	V _{DDDR} = 2.5 V
			15	50	μА	V _{DDDR} = 5.0 V ±10%
				300	μА	V _{DDDR} = 2.4 V (μPD78CP14)
				1	mA	V _{DDDR} = 5.0 V ±5% (μPD78CP14)
V _{DD} rise, fall time	t _{RVD} , t _{FVD}	200			μS	
STOP setup time to V _{DD}	†SSTVD	12T + 0.5			μs	
STOP hold time from V _{DD}	tHVDST	12T + 0.5			μS	



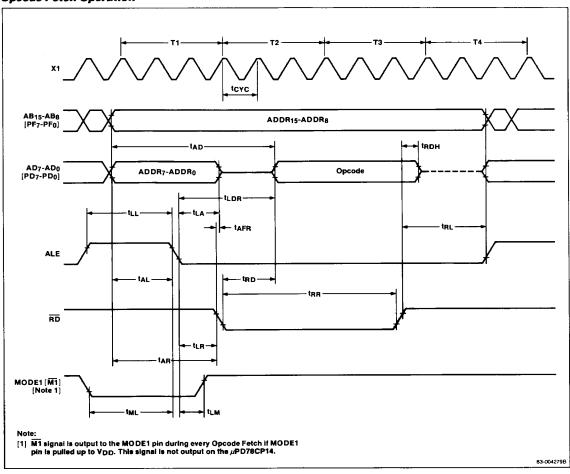
Timing Waveforms

Data Retention Timing


Read Operation

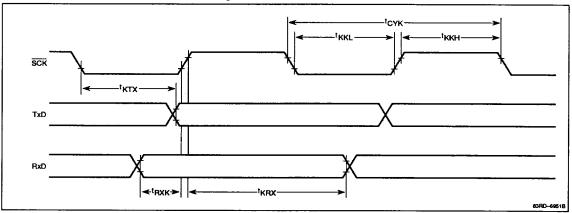
5-26

Note:

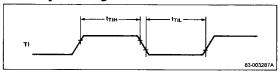

83-004278B

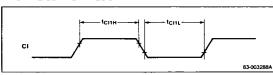
tLi

[1] IO signal is output to the MODE0 pin [if MODE0 is pulled up to VDD] during a read or write of special registers ar-ar2 or a write to register MM or MF. Refer to description of Port Emulation Mode [PEM] in the User's Manual for further explanation. This signal is not output on the µPD78CP14.



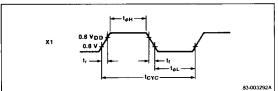
Opcode Fetch Operation

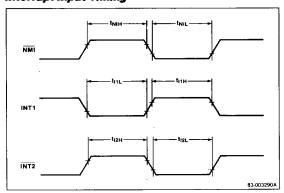


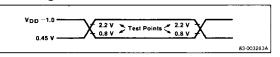

Serial Operation Transmit/Receive Timing

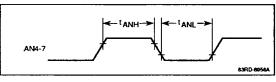
Timer Input Timing

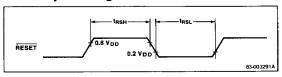
Timer/Event Counter Input Timing: Event Counter Mode

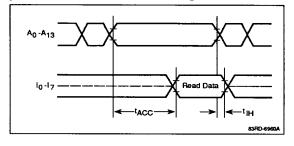



Timer/Event Counter Input Timing: Pulse Width Measurement Mode


External Clock Timing


Interrupt Input Timing


AC Timing Test Points


AN4-AN7 Edge Detection Timing

RESET Input Timing

μPD78CG14E EPROM Read Timing

μPD78CP14 PROGRAMMING

In the μ PD78CP14, the mask ROM of the μ PD78C1X/C1XA is replaced by a one-time programmable ROM (OTP ROM) or a reprogrammable, ultraviolet erasable ROM (UV EPROM). The ROM is 16,384 by 8 bits and can be programmed using a general-purpose PROM writer with a μ PD27C256A programming mode. Refer to tables 3 through 5 and the AC and DC Programming Characteristics for specific information applicable to programming the μ PD78CP14.

The PA-78CP14CW/GF/GQ/L are the socket adapters used for configuring the μ PD78CP14 to fit a standard μ PD27C256A PROM socket.

Table 3. Pin Functions during EPROM Programming

Pin	Function	Description
PA ₀ -PA ₇	A ₀ -A ₇	Low-order 8-bit address
PF ₀	A ₈	High-order 7-bit address
NMI	A ₉	-
PF ₂ -PF ₆	A ₁₀ -A ₁₄	•
PD ₀ -PD ₇	D ₀ -D ₇	Data input/output
PB ₆	ČĒ	Chip enable input
PB ₇	<u>DE</u>	Output enable input
RESET	RESET	PROM programming mode requires a low voltage on this pin
Mode 0	Mode 0	Enter PROM programming mode by applying a high voltage to this pin
Mode 1	Mode 1	Enter PROM programming mode by applying a low voltage to this pin
STOP	V _{PP}	High-voltage input (write/verify) high level (read)

Table 4. Summary of Operation Modes for EPROM Programming

Operation Mode	CE	ŌĒ	V _{PP}	V _{DD}	RESET	MODE0	MODE1	A ₁₄
Program write	L	Н	+ 12.5 V	+6 V	L	Н	L	L
Program verify	Н	L	+ 12.5 V	+6 V	L	Н	L	L
Program inhibit	Н	Н	+ 12.5 V	+6 V	L	Ĥ	L	L
Read	L	L	+5 V	+5 V	L	н	L	L
Output disable	L ·	Н	+5 V	+5 V	L	н	L	L
Standby	Н	L/H	+5 V	+5 V	L	Н	L	L

Notes:

Caution: When Vpp is set to +12.5 V and V_{DD} is set to +6 V, you cannot set both \overline{CE} and \overline{OE} to low level (L).

Table 5. Recommended Connections for Unused Pins (EPROM Programming Mode)

	·				
Pin	Recommended Connection Method Connect to V _{SS}				
INT1					
X1	Connect to V _{SS}				
X2	Leave this pin disconnected				
ANO-AN7	Connect to V _{SS}				
VA _{REF}	Connect to V _{SS}				
AV _{DD}	Connect to V _{SS}				
AV _{SS} Connect to V _{SS}					
Remaining pins	ins Connect each pin via a resistor to VSS				

PROM Write Procedure

- (1) Connect the RESET pin, the MODE1 pin, and A₁₄ pin to a low level and connect the MODE0 pin to a high level. Connect all unused pins as recommended in Table 5.
- (2) Apply +6 V to the V_{DD} pin and +12.5 V to the V_{pp} pin.
- Provide the initial address.
- (4) Provide write data.
- (5) Provide 1-ms program pulse (active low) to the CE pin.
- (6) This bit is now verified with a pulse (active low) to the OE pin. If the data has been written, proceed to step 8; if not, repeat steps 4 to 6. If the data cannot be correctly written after 25 attempts, go to step 7.
- (7) Classify as defective and stop write operation.
- (8) Provide write data and supply program pulse (for additional writing) for 3 ms times the number of repeats performed between steps 4 to 6.
- (9) Increment the address.
- (10) Repeat steps 4 to 9 until the end address.

PROM Read Procedure

- (1) FIX the RESET pin, the MODE1 pin, and A₁₄ pin to a low level and connect the MODE0 pin to a high level
- (2) Apply +5 V to the VDD and Vpp pins.
- (3) Input the address of the data to be read to pins A₀-A₁₄.
- (4) Read mode is entered with a pulse (active low) on both the CE and OE pins.
- (5) Data is output to the D₀-D₇ pins.

EPROM Erasure

Data in an EPROM is erased by exposing the quartz window in the ceramic package to light having a wavelength shorter than 400 nm, including ultraviolet rays, direct sunlight, and fluorescent light. To prevent unintentional erasure, mask the window.

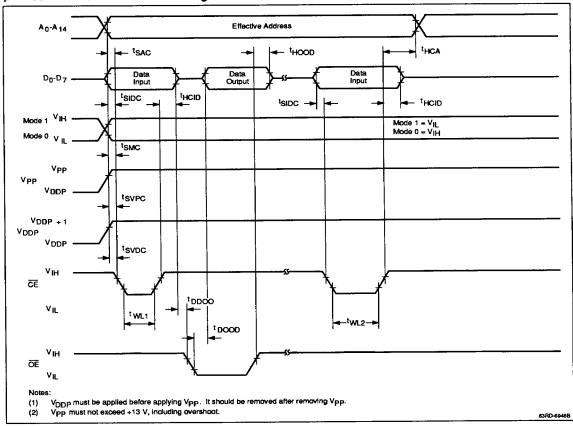
Typically, data is erased by 254-nm ultraviolet rays. A minimum lighting level of 15W-s/cm² (ultraviolet ray intensity x exposure time) is required to completely erase written data. Erasure by an ultraviolet lamp rated at 12 mW/cm² takes approximately 15 to 20 minutes. Remove any filter on the lamp and place the device within 2.5 cm of the lamp tubes.

μ PD78CP14 DC Programming Characteristics T_A = 25 ±5°C; MODE1 = V_{IL} ; MODE0 = V_{IH} ; V_{SS} = 0 V

Parameter	Symbol	Symbol*	Min	Тур	Max	Unit	Condition
High-level input voltage	V _{IH}	V _{IH}	2.2		V _{DDP} + 0.3	V	
Low-level input voltage	V _{IL}	V _{IL}	-0.3		0.8	٧	
input leakage current	I _{LIP}	l _{LI}			±10	μА	0 ≤ V ₁ ≤ V _{DDP}
High-level output voltage	V _{OH}	V _{OH}	V _{DD} - 1.0			V	I _{OH} = -1.0 mA
Low-level output voltage	VOL	VOL			0.45	V	I _{OL} = 2.0 mA
Output leakage current	lLO				±10	μA	$0 \le V_O \le V_{DDP}; \overline{OE} = V_{IH}$
V _{DDP} power voltage	V _{DDP}	Vcc	5.75	6.0	6.25	٧	Program memory write mode
			4.5	5.0	5.5	V	Program memory read mode
V _{PP} power voltage	V _{PP}	V _{PP}	12.2	12.5	12.8	V	Program memory write mode
				V _{PP} = V _{DDP}		V	Program memory read mode
V _{DDP} power current	lDD	loc			30	mA	Program memory write mode
					30	mA	Program memory read mode; CE = V _{IL} ; V _I = V _{IH}
V _{PP} power current	lpp	lpp			30	mA	Program memory read mode; CE = V _{IL} ; OE = V _{IH}
				1	100	μА	Program memory write mode

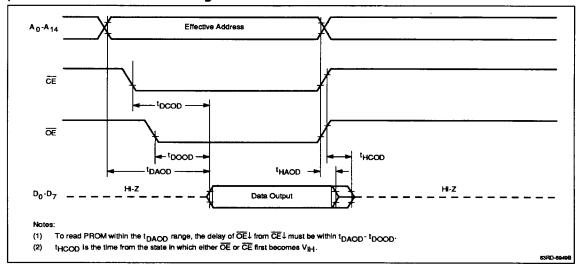
^{*} Corresponding symbols of the µPD27C256A.

μ PD78CP14 AC Programming Characteristics


TA = 25 ±5°C; MODE1 = VIL; VSS = 0 V

Parameter	Symbol	Symbol*	Min	Тур	Max	Unit	Condition
Address setup time to CE ↓	tsac	t _{AS}	2			μS	
Data to OE ↓ delay time	t _{DD} OO	toes	2			μs	
Input data setup time to CE ↓	tsinc	t _{DS}	2			μS	
Address hold time from CE ↑	^t HCA	t _{AH}	2			μs	
Input data hold time from CE↑	tHCID	t _{DH}	2			μS	
Output data hold time from OE ↑	tHOOD	t _{DF}	0		130	ns	
V _{pp} setup time to CE ↓	tsvpc	t _{VPS}	2			μs	
V _{DDP} setup time to CE ↓	tsvdc	t _{VDS}	2			μs	
initial program pulse width	t _{WL1}	tpw	0.95	1.0	1.05	ms	
Additional program pulse width	t _{WL2}	topw	2.85		78.75	ms	
MODE0/MODE1 setup time vs. CE↓	tsMC		2			μѕ	MODE1 = VIL and MODE0 = VIH
Address to data output time	^t DAOD	t _{ACC}			2	μs	ŌE = V _{IL}
CE ↓ to data output time	†DCOD	tCE			1	μѕ	
OE ↓ to data output time	t _D OOD	toE			1	μS	
Data hold time from OE ↑ or CE ↑	tHCOD	t _{DF}	0		130	ns	
Data hold time from address	t _{HAOD}	tон	0			ns	OE = V _{IL}

^{*} Corresponding symbols of the µPD27C256A.



μPD78CP14 PROM Write Mode Timing

μPD78CP14 PROM Read Mode Timing

Operand Symbols

Symbol	Allowable Operands
Regist	ers
ſ.	V, A, B, C, D, E, H, L
r1	EAH, EAL, B, C, D, E, H, L
r2	A, B, C
Specia	i Registers
sr	PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, SML, E0M, ETMM, TMM, MM, MCC, MA, MB, MC, MF, TXB, TM0, TM1, ZCM
sr1	PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, EOM, TMM, RXB, CRO, CR1, CR2, CR3
sr2	PA, PB, PC, PD, PF, MKH, ANM, MKL, SMH, EOM, TMM
sr3	ETMO, ETM1
sr4	ECNT, ECPT
Regist	er Pairs
rp rp1 rp2 rp3	SP, B, D, H V, B, D, H, EA SP, B, D, H, EA B, D, H
Regist	er Pair Addressing
rpa rpa1	B, D, H, D+ , H+ , D-, H- B, D, H
rpa2	B, D, H, D+, H+, D-, H-, D+byte, H+A, H+B, H+EA, H+byte
rpa3	D, H, D++, H++, D+byte, H+A, H+B, H+EA, H+byte
Flags	
f	CY, HC, Z
Interr	upt Flags
irf	INTFNMI, INTFT0, INTFT1, INTF1, INTF2, INTFE0, INTFE1, INTFEIN, INTFA0, INTFSR, INTFST, ER, OV, AN4, AN5, AN6, AN7, SB
Imme	diate Data
wa	8-bit immediate data (low byte of working register address)
word	16-bit immediate data
byte	8-bit immediate data
bit	3-bit immediate data (b ₂ , b ₁ , b ₀)

Operand Definitions

INTFT0 = FT0

INTFT1 = FT1 INTF1 = F1

INTFE1 = FE1

 $\begin{array}{l} \text{INTF2} = \text{F2} \\ \text{INTFE0} = \text{FE0} \end{array}$

Special Registers (sr-sr	4)
PA = Port A	ECNT = Timer/event
PB = Port B	counter upcounter
PC = Port C	ECPT = Timer/event
PD = Port D	counter capture
PF = Port F	ETMM = Timer/event
MA = Mode A	counter mode
MB = Mode B	
MC = Mode C	EOM = Timer/event
MCC = Mode control C MF = Mode F	counter output mode
	TXB = Transmit buffer
MM = Memory mapping	RXB = Receive buffer
TM0 = Timer register 0	SMH = Serial mode high
TM1 = Timer register 1	SML = Serial mode low
TMM = Timing mode	MKH = Mask high
ETM0 = Timer/event counter	MKL = Mask low
register 0	ANM = A/D channel mode
ETM1 = Timer/event counter	CRO to CR3= A/D conversion
register 1	result 0-3
ZCM = Zero-cross mode	
control register	
Register Pairs (rp-rp3)	
SP = Stack pointer	H = HL
B = BC	V = VA
D = DE	EA = Extended accumulator
Register Pair Addressin	g (rpa-rpa3)
B = (BC)	D++ = (DE)++
$\mathbf{D} = (\mathbf{DE})$	$H++ \approx (HL)++$
H = (HL)	D+byte = (DE+byte)
D+=(DE)+	H+byte = (HL+byte)
H+=(HL)+	H+A = (HL+A)
D-=(DE)-	H+B = (HL+B)
H = (HL)-	H+EA = (HL+EA)
Flags (f)	
CY = Carry HC = H	lalf-carry Z = Zero
interrupt Flags (irf)	
INTFNMI = NMI interrupt flag	INTFEIN = FEIN
, ,	INTFAD = FAD

INTFSR = FSR

 $\mathsf{INTFST} = \mathsf{FST}$

SB = Standby

AN4 to AN7 = Analog input 4-7

 $\begin{array}{l} \mathsf{ER} = \mathsf{Error} \\ \mathsf{OV} = \mathsf{Overflow} \end{array}$

Operand Codes

legis	sters	(r, r2))				
R ₂	R ₁	Ro	Reg	r	r2		
0	0	0	٧	· T			
0	0 1	1 0	A B		Ţ		
0	1	1	С		1		
1	0	0	D				
1	0	1	Ε				
1	1	0	H				
1	1	1	L	1			

Registers (r1)

T ₂	T ₁	T ₀	Reg
0	0	0	EAH
0	0	1	EAL
0	1	0	В
0	1	1	С
1	0	0	D
1	0	1	Ε
1	1	0	Н
1	1	1	L

Special Registers (sr, sr1, sr2)

-		9.0.0		,,	··-,				
85	S ₄	S ₃	S ₂	S ₁	So	Special Reg	sr	sr1	sr2
0	0	. 0	0	0	0	PA	T	T	Т
0	0	0	0	0	1	PB			
0	0	0	0	1	0	PC			
0	0	0	0	1	1	PD			
0	0	0	1	0	1	PF			
0	0	0	1	1	0	MKH		l	
0	0	0	1	1	1	MKL		-	
0	0	1	0	0	0	ANM		1	
0	0	1	0	0	1	SMH		\perp	上
0	0	1	0	1	0	SML			
0	0	1	0	1	1	EOM		\perp	T
0	0	1	1	0	0	ETMM			
0	0	1	1	0	1	TMM		T	T
0	1	0	0	0	0	MM	ı	_	
0	1	0	0	0	1	MCC			
0	1	0	0	1	0	MA			
0	1	0	0	1	1	MB			
0	1	0	1	0	0	MC			
0	1	0	1	1	1	MF			
0	1	1	0	0	0	TXB			
0	1	1	0	0	1	RXB	_	Τ	
0	1	1	0	1	0	TM0	Т	_	
0	1	1	0	1	1	TM1	1		
1	0	0	0	0	0	CR0	_	Τ	
1	0	0	0	0	1	CR1			
1	0	0	0	1	0	CR2			
1	0	0	0	_1_	1	CR3			
1	0	1	0	0	0	ZCM	Ι	_	

Special Registers (sr3)

U _O	Special Reg
0	ETM0
1	ETM1

Special Registers (sr4)

V _O	Special Reg	
0	ECNT	
1	FCPT	

Register Pairs (rp, rp2, rp3)

Pı	PO	Reg Pair	rp	rp2	rp3	
0	0	SP	T	T		
0	1	BC				
1	0	DE				
1	1	HL			\perp	
0	0	EA	_	\perp		
	P ₁ 0 0 1 1 0	P1 P0 0 0 1 1 0 1 1 1 0 0	0 0 SP 0 1 BC 1 0 DE 1 1 HL	0 0 SP 0 1 BC 1 0 DE 1 1 HL	0 0 SP 0 1 BC 1 0 DE 1 1 HL	0 0 SP 0 1 BC 1 0 DE 1 1 HL

Register Pairs (rp1)

Q ₂	Q ₁	Qo	Reg Pair
0	0	0	VA
0	0	1	BC
0	1	0	DE
0	1	1	HL
1	0	0	EA

Register Pair Addressing (rpa, rpa1, rpa2)

A ₃	A ₂	A ₁	A ₀	Addressing	rpa	rpa1	rpa2
0	0	0	0	_	- T	T	Т
0	0	0	1	(BC)			
0	0	1	0	(DE)	- 1		
0	0	1	1	(HL)			
0	1	0	0	(DE)+	-		
0	1	0	1	(HL)+			
0	1	1	0	(DE)-			į.
0	1	1	1	(HL)—			
1	0	1	1	(DE+byte)			-
1	1	0	0	(HL+A)			
1	1	0	1	(HL+B)			į
1	1	1	0	(HL+EA)			
1	1	1	1	(HL+byte)			上
5	. 4 5	- P A					

Register Pair Addressing (rpa3)

C ₃	C ₂	C ₁	Co	Addressing
0	0	1	0	(DE)
0	0	1	1	(HL)
0	1	0	0	(DE)++
0	1	0	1	(HL)++
1	0	1	1	(DE+byte)
1	1	0	0	(HL+A)
1	1	0	1	(HL+B)
1	1	1	0	(HL+EA)
1	1	1	1	(HL+byte)

Operand Codes (cont)

Flags	(f)		
F ₂	F ₁	Fo	Flag
0	0	0	
0	1	0	CY
0	1	1	HC
1	0	0	Z

nten	rupt F	Flags	(Irf)				
14	l ₃	12	l ₁	l ₀	Flag		
0	0	0	0	0	NMI	_	
0	0	0	0	1	FT0		
0	0	0	1	0	FT1		
0	0	0	1	1	F1		
Ō	0	1	0	0	F2		
0	0	1	0	1	FE0		
Ô	0	1	1	0	FE1		
Ō	Ō	1	1	1	FEIN		
Ó	1	0	0	0	FAD		
0	1	0	0	1	FSR		
Ō	1	0	1	0	FST		
Ö	1	Ó	1	1	ER		
0	1	1	0	0	ov		
1	0	0	0	0	AN4		
1	Ô	0	0	1	AN5		
i	Ŏ	Ō	1	0	AN6		
1	Ō	Ó	1	1	AN7		
1	Ŏ	1	0	0	SB		

Graphic Symbols

Transfer direction, result
Logical product (logical AND)
Logical sum (logical OR)
Exclusive-OR
Complement
Concatenation

Instruction Set

			100	82			
		•	를 없다.	32 .	State		Skip
o Dit Octo Tennetor	Mnemonic uperand	Uperation	/ 6 5 4 3 2 0	7 6 5 4 3 2 1 0	(Note 1)	Bytes	Condition
olt Data III	GIISIEI						
ΜOΛ	H,A	(r1) ← (A)	$0 \ 0 \ 0 \ 1 \ 1 \ T_2 \ T_1 \ T_0$		4	-	
	A, r1	(A) ← (r1)	0 0 0 0 1 T ₂ T ₁ T ₀		4	-	
	*sr,A	(sr) ← (A)	0 1 0 0 1 1 0 1	1 1 55 54 53 52 51 50	10	2	
	*A,sr1	(A) ← (sr1)	0 1 0 0 1 1 0 0	1 1 S ₅ S ₄ S ₃ S ₂ S ₁ S ₀	10	2	
	r,word	(r) ← (word)	0 1 1 1 0 0 0 0	0 1 1 0 1 R2 R1 R0	17	4	
			Low addr	High addr			
	word,r	word,r (word) ← (r)	0 1 1 1 0 0 0 0	0 1 1 1 1 R ₂ R ₁ R ₀	17	4	
			Lowaddr	High addr			
MVI	*r,byte (r)	(r) ← byte	0 1 1 0 1 R ₂ R ₁ R ₀	Data	7	2	
	sr2,byte	sr2,byte (sr2) ← byte	0 1 1 0 0 1 0 0	S ₃ 0 0 0 0 S ₂ S ₁ S ₀	4	က	
			Data				
MVIW	*wa, byte	*wa, byte ((V)•(wa)) ← byte	0 1 1 1 0 0 0 1	Offiset	13	3	
			Data				
MVIX	*rpa1,byte	*rpa1,byte (rpa1) ** byte	0 1 0 0 1 0 A ₁ A ₀	Data	10	2	
STAW	*wa	$((V)\bullet(wa)) \leftarrow (A)$	0 1 1 0 0 0 1 1	Offset	10	2	
LDAW	*wa	(A) ← ((V)•(wa))	0 0 0 0 0 0 0 1	Offset	5	2	
STAX	rpa2	((rpa2)) ← (A)	A ₃ 0 1 1 1 A ₂ A ₁ A ₀	Data (Note 2)	7/13 (Note 3)	2	
LDAX	rpa2	(A) ← ((rpa2))	A ₃ 0 1 0 1 A ₂ A ₁ A ₀	Data (Note 2)	7/13 (Note 3)	2	
EXX		(B) \rightarrow (B), (C) \rightarrow (C), (D) \rightarrow (D) (E) \rightarrow (E'), (H) \rightarrow (H'), (L) \rightarrow (L')	0 0 0 1 0 0 0 1		4	-	
EXA		$(V) \leftarrow (V), (A) \leftarrow (A'), (EA) \leftarrow (EA')$	0 0 0 1 0 0 0 0		4	-	-
EX.		(H) ← (H'), (L) ← (L')	0 1 0 1 0 0 0 0		4	-	
BLOCK		$((0E)) \leftarrow ((HL)), (DE) \leftarrow (0E) + 1,$ $(HL) \leftarrow (HL) + 1, (C) \leftarrow (C) - 1$ End if borrow	0 0 1 1 0 0 0 1		13 x (C + 1)	-	
16-Bit Data Transfer	ransfer						
DMOV	rp3, EA (r	(rp3 _L) ← (EAL), (rp3 _H) ← (EAH)	1 0 1 1 0 1 P ₁ P ₀		4	-	
	F∆ rn3	FA rn3 (FAI) ← (rn3,) (FAH) ← (rn3,,)	1 0 1 0 0 1 P. P.		4	-	

(2) B2 (Data): rpa2 = D+byte or H+byte.

(3) Right side of slash (/) in states indicates case rpa2 or rpa3 = D+byte, H+A, H+E, H+EA, or H+byte.

2-byte instruction (with *): 7 states 3-byte instruction (with *): 10 states 4-byte instruction: 14 states

(1) For the skip condition, the idle states are as follows:

Notes:

1-byte instruction: 4 states 2-byte instruction: 8 states 3-byte instruction: 11 states

(4) B3 (Data): rpa3 = D+byte or H+byte.

Instruc	tion S	Instruction Set (cont)				ļ	
			Operation Code	on Code			
				B2			
			2	Z,	State	a de la company	Skip
Mnemonic	Operand	Operation	7 6 5 4 3 2 1 0	2 6 4 6	(more r)		
16-Bit Data Transfer (conf	ınsfer (con	Ŧ			;	,	
DMOV	sr3, EA	(sr3) ← (EA)	0 1 0 0 1 0 0 0	1 0 0 1	4	7	
•	EA,sr4	(EA) ← (sr4)	0 1 0 0 1 0 0 0	1 1 0 0 0 0 0 V ₀	4	2	
SBCD	word	$(word) \leftarrow (C), (word + 1) \leftarrow (B)$	0 1 1 1 0 0 0 0	0 0 0 1 1 1 1 0	8	4	
			Low addr	High addr			
SDED	word	$(word) \leftarrow (E), (word + 1) \leftarrow (D)$	0 1 1 1 0 0 0 0	0 0 1 0 1 1 1 0	ଯ	4	
			Low addr	High addr			
SHLD	word	$(word) \leftarrow (L), (word + 1) \leftarrow (H)$	0 1 1 1 0 0 0 0	0 0 1 1 1 1 1 0	ଯ	4	
			Low addr	High addr			
SSPD	word	(word) \leftarrow (SP _L), (word + 1) \leftarrow (SP _H)	0 1 1 1 0 0 0 0 0	0 0 0 0 1 1 1 0	ଛ	4	
			Low addr				
STEAX	rpa3	((rpa3)) ← (EAL), (((rpa3)) + 1)) ← (EAH)	0 1 0 0 1 0 0 0	1 0 0 1 C ₃ C ₂ C ₁ C ₀	14/20 (Note 3)	က	
			Data (Note 4)				
LBCD	word	(C) \leftarrow (word), (B) \leftarrow (word + 1)	0 1 1 1 0 0 0 0	0 0 0 1 1 1 1 1	8	4	
			Low addr	High addr			
0301	word	$(E) \leftarrow (word), (D) \leftarrow (word + 1)$	0 1 1 1 0 0 0 0 0	0 0 1 0 1 1 1 1	8	4	
			Low addr	High addr		i.	i
CHC	word	(L) ← (word), (H) ← (word + 1)	0 1 1 1 0 0 0 0	0 0 1 1 1 1 1 1	29	4	
			Low addr	High addr			
LSPD	word	(SP ₁) ← (word), (SP _H) ← (word + 1)	0 1 1 1 0 0 0 0	0 0 0 0 1 1 1 1	8	4	
			Low addr	High addr			
LDEAX	rpa3	(EAL) ← ((rpa3)), (EAH) ← (((rpa3) + 1))	0 1 0 0 1 0 0 0	1 0 0 0 C3 C2 C1 C0	14/20 (Note 3)	ო	
			Data (Note 4)			į.	
PUSH	ᅙ	$(((SP) - 1)) \leftarrow (rp1_H),$ $(((SP) - 2)) \leftarrow (rp1_L), (SP) \leftarrow (SP) - 2$	1 0 1 1 0 02 01 00		£	-	
РОР	rp1	$(rp1_L) \leftarrow ((SP)), (rp1_H) \leftarrow (((SP) + 1)), (SP) \leftarrow (SP) + 2$	1 0 1 0 0 02 01 00		9	-	
×	*rp2.woi	rp2.word (rp2) (word)	0 P ₂ P ₁ P ₀ 0 1 0 0	Low byte	9	က	
			High byte				
TABLE		(C) \leftarrow (((PC) + 3 + (A))), (B) \leftarrow (((PC) + 3 + (A) + 1))	0 1 0 0 1 0 0 0	10101000	17	2	
8-Bit Arithmetic [Register	rtic [Regist	ior]					
ADD	Ą	$(A) \leftarrow (A) + (r)$	0 1 1 0 0 0 0 0 0	- 1	æ0	2	
	I,A	$(r) \leftarrow (r) + (A)$	0 1 1 0 0 0 0 0	0 0 R ₂ R ₁	œ	2	
ADC	A,	$(A) \leftarrow (A) + (r) + (CY)$	0 1 1 0 0 0 0 0 0	- 1	æ	2	
	Y.	$(r) \leftarrow (r) + (A) + (CY)$	0 1 1 0 0 0 0 0 0	0 1 0 1 0 R ₂ R ₁ R ₀	æ	7	

Instruction Set (cont)

				絽			
Mnemonic	Mnemonic Operand	Operation	83 7 6 5 4 3 2 1 0 7	84 6 5 4 3 2 1 0	State (Note 1)	Rytes	Skip
8-Bit Arithmetic [Register] (cont)	etic (Registe	r] (cont)					
ADDNC	A,r	$(A) \leftarrow (A) + (r)$	0 1 1 0 0 0 0 0 1	0 1 0 0 R2 R1 R0	&	2	No carry
	r,A	$(r) \leftarrow (r) + (A)$	0 1 1 0 0 0 0 0 0	æ	œ	2	No carry
SUB	A,r	$(A) \leftarrow (A) - (r)$	0 1 1 0 0 0 0 0 1	Æ	œ	2	
	r,A	$(r) \leftarrow (r) - (A)$	0 1 1 0 0 0 0 0 0	æ	8	2	
SBB	A,r	$(A) \leftarrow (A) - (r) - (CY)$	0 1 1 0 0 0 0 0 1	. H.	80	2	
	r,A	$(r) \leftarrow (r) - (A) - (CY)$	0 1 1 0 0 0 0 0 0	1	ω	2	
SUBNB	A,r	$(A) \leftarrow (A) - (r)$	0 1 1 0 0 0 0 0 1	Œ	80	2	No borrow
	r,A	$(r) \leftarrow (r) - (A)$	0 1 1 0 0 0 0 0 0	æ	80	2	No borrow
ANA	A,r	(A) ← (A) ∧ (r)	0 1 1 0 0 0 0 0 0 1	0 0 0 1 R ₂ R ₁ R ₀	∞	2	
	A,	(r) ← (r) ∧ (A)	0 1 1 0 0 0 0 0 0	Æ	80	2	
ORA	A,	$(A) \leftarrow (A) \lor (r)$	0 1 1 0 0 0 0 0 0 1	æ	80	2	
	r,A	(r) — (r) V (A)	0 1 1 0 0 0 0 0 0	Æ	~	2	
XBA	A,r	(A) ← (A) ♦ (r)	0 1 1 0 0 0 0 0 0 1	Æ	œ	2	
	r,A	$(r) \leftarrow (r) \lor (A)$	0 1 1 0 0 0 0 0 0	Æ	80	2	
GTA	A,r	(A) - (r) - 1	0 1 1 0 0 0 0 0 1	æ	8	2	No borrow
i	r,A	(r) - (A) - 1	0 1 1 0 0 0 0 0 0	0 1 0 1 R ₂ R ₁ R ₀	8	2	No borrow
ΓIΑ	A,r	(A) — (r)	0 1 1 0 0 0 0 0 0 1	0 1 1 1 R ₂ R ₁ R ₀	&	2	Borrow
	r,A	(r) - (A)	0 1 1 0 0 0 0 0 0	0 1 1 1 R ₂ R ₁ R ₀	8	2	Borrow
NEA	A,r	(A) – (r)	0 1 1 0 0 0 0 0 1	1 1 0 1 R ₂ R ₁ R ₀	80	2	No zero
	r,A	(r) - (A)	0 1 1 0 0 0 0 0 0	1 1 0 1 R ₂ R ₁ R ₀	œ	2	No zero
EOA	A,r	(A) — (r)	0 1 1 0 0 0 0 0 0 1	1 1 1 1 R ₂ R ₁ R ₀	œ	2	Zero
	r,A	(r) - (A)	0 1 1 0 0 0 0 0 0	1 1 1 1 R2 R ₁ R ₀	&	2	Zero
ONA	A,r	(A) A (r)	0 1 1 0 0 0 0 0 1	1 0 0 1 R ₂ R ₁ R ₀	∞	2	No zero
0FFA	A,r	(A) ^ (r)	0 1 1 0 0 0 0 0 0 1	1 0 1 1 R ₂ R ₁ R ₀		2	Zero
8-Bit Arithmetic (Memory)	rtic (Memory	İ					
ADDX	гра	(A) ← (A) + ((rpa))	0 1 1 1 0 0 0 0 0 1	1 0 0 0 A2 A1 A0	F	2	
ADCX	rpa	$(A) \leftarrow (A) + ((rpa)) + (CY)$	0 1 1 1 0 0 0 0 1	1 0 1 0 A2 At A0	1	2	
ADDNCX	rpa	(A) ← (A) + ((rpa))	0 1 1 1 0 0 0 0 1	0 1 0 0 A2 A1 A0	F	2	No carry
SUBX	rpa	$(A) \leftarrow (A) - ((rpa))$	0 1 1 1 0 0 0 0 0 1	Æ	F	2	
SBBX	гра	$(A) \leftarrow (A) - ((rpa)) - (CY)$	0 1 1 1 0 0 0 0 1	1 1 1 0 A ₂ A ₁ A ₀	E	2	
SUBNBX	гра	$(A) \leftarrow (A) - ((rpa))$	0 1 1 1 0 0 0 0 1	0 1 1 0 A ₂ A ₁ A ₀	=	2	No borrow
ANAX	rpa	I	0 1 1 1 0 0 0 0 1	Ā	=	2	
OBAY		(A) 4 (A) V (Co. 2)		1			

Mnemonic Operand B-Bit Arithmetic [Memory] [cont XRAX rpa (A) < GTAX rpa (A) < LIAX rpa (A) < NFAX rpa (A) < NF		E E	28			
Mnemonic Operand Bit Arithmetic [Memory] in RAX rpa (STAX rpa (STAX rpa (STAX rpa (STAX rpa (; £				
Bit Arithmetic [Memory] [O	Operation	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	State (Note 1)	Bytes	Skip Condition
гра	cont)					
гра	(A) ← (A) ♦ ((rpa))	0 1 1 1 0 0 0 0	0 1 0 A ₂ A ₁	=	2	
гра	(A) - ((rpa)) - 1	0 1 1 1 0 0 0 0 0	1 0 1 0 1 A ₂ A ₁ A ₀	=	2	No borrow
roa	(A) - ((rpa))	0 1 1 1 0 0 0 0	1 0 1 1 1 A ₂ A ₁ A ₀	=	2	Borrow
	(A) – ((rpa))	0 1 1 1 0 0 0 0	1 1 1 0 1 A ₂ A ₁ A ₀	=	2	No zero
roa	(A) – ((rpa))	0 1 1 1 0 0 0 0	1 1 1 1 A ₂ A ₁ A ₀	=	2	Zero
гра	(A) A ((rpa))	0 1 1 1 0 0 0 0	1 1 0 0 1 A2 A1 A0	=	2	No zero
гра	(A) A ((rpa))	0 1 1 1 0 0 0 0	1 1 0 1 1 A2 A1 A0	=	2	Zero
Immediate Data						
*A.byte	(A) ← (A) + byte	0 1 0 0 0 1 1 0	Data	7	2	
r,byte	(r) ← (r) + byte	0 1 1 1 0 1 0 0	0 1 0 0 0 R ₂ R ₁ R ₀	=	က	
sr2, byte	sr2, byte (sr2) ← (sr2) + byte	0 1 1 0 0 1 0 0	S ₃ 1 0 0 0 S ₂ S ₁ S ₀	80	က	
		Daia	Doto	7	6	
ACI *A,byte (*A,byte (A) \leftarrow (A) + byte + (CY)		0 1 0 1 0 B. B. B.	- =	3 6	
r, Dyte	(r) (r) + nyte + (b.r)	Data	7			
sr2,byte	sr2,byte (sr2) ← (sr2) + byte + (CY)	0 1 1 0 0 1 0 0	S ₃ 1 0 1 0 S ₂ S ₁ S ₀	50	က	
		Data				
ADINC *A byte	(A) ← (A) + byte	0 0 1 0 0 1 1 0	Data	7	2	No carry
r,byte	(r) ← (r) + byte	0 1 1 1 0 1 0 0 Data	0 0 1 0 0 R ₂ R ₁ R ₀	Ħ	က	No carry
sr2,byte	sr2,byte (sr2) ← (sr2) + byte	0 1 1 0 0 1 0 0 Data	S ₃ 0 1 0 0 S ₂ S ₁ S ₀	20	က	No carry
CIII *A byto	(A) ← (A) — hyte	0 1 1 0 0 1 1 0	Data	7	2	
r,byte	$(r) \leftarrow (r) - byte$	0 1 1 1 0 1 0 0 Data	0 1 1 0 0 R ₂ R ₁ R ₀	=	ဇ	
sr2,byte	sr2,byte (sr2) ← (sr2) − byte	0 1 1 0 0 1 0 0 Data	S ₃ 1 1 0 0 S ₂ S ₁ S ₀	50	3	
SBI *A.byte	(A) ← (A) – byte – (CY)	0 1 1 1 0 1 1 0	Data	7	2	
r,byte	$(r) \leftarrow (r) - byte - (CY)$	0 1 1 1 0 1 0 0 Data		=	ო	
sr2,byte	sr2,byte (sr2) ← (sr2) − byte − (CY)	0 1 1 0 0 1 0 0	S ₃ 1 1 1 0 S ₂ S ₁ S ₀	20	ო	

NEC

			Operati	Operation Code			1
			18	B2 			
Mnemonic Operand	Operand	Operation	83 7 6 5 4 3 2 1 0	84 7 6 5 4 3 2 1 0	State (Note 1)	Bytes	Skip Condition
Immediate Data (cont)	(cont)			1			
SUINB	*A.byte ((A) ← (A) — byte	0 0 1 1 0 1 1 0	Data	7	2	No borrow
	r,byte ((r) ← (r) – byte	0 1 1 1 0 1 0 0	0 0 1 1 0 R ₂ R ₁ R ₀	11	က	No borrow
"	sr2,byte ((sr2) ← (sr2) – byte	0 1 1 0 0 1 0 0	S ₃ 0 1 1 0 S ₂ S ₁ S ₀	20	8	No borrow
	Ì		Data				
ANI	*A,byte ((A) ← (A) ∧ byte	0 0 0 0 0 1 1 1	Data	7	2	
	r,byte (I	(r) ← (r) ∧ byte	0 1 1 1 0 1 0 0 Data	0 0 0 0 1 R ₂ R ₁ R ₀	±	3	
l	sr2,byte (sr2) ← (sr2) ∧ byte	0 1 1 0 0 1 0 0 Data	S ₃ 0 0 0 1 S ₂ S ₁ S ₀	20	33	
ORI	*A,byte (A) ← (A) V byte	0 0 0 1 0 1 1 1	Data	7	2	
l	_	(r) ← (r) V byte	0 1 1 1 0 1 0 0 Data	0 0 0 1 1 R ₂ R ₁ R ₀	=	8	
l "	sr2,byte (sr2) ← (sr2) V byte	0 1 1 0 0 1 0 0 Data	S ₃ 0 0 1 1 S ₂ S ₁ S ₀	20	က	
IBX	*A.byte (/	A) ← (A) ₩ byte	0 0 0 1 0 1 1 0	Data	7	2	
	r,byte (I	r) ← (r) V byte	0 1 1 1 0 1 0 0 Data	0 0 0 1 0 R ₂ R ₁ R ₀	=	က	
۱ "	sr2,byte (9	(sr2) ← (sr2) + byte	0 1 1 0 0 1 0 0	S ₃ 0 0 1 0 S ₂ S ₁ S ₀	50	က	
			Data				
.	$^{-}$	A) - byte - 1	0 0 1 0 0 1 1 1		7	2	No borrow
	_	r) - byte - 1	0 1 1 1 0 1 0 0 Data	0 0 1 0 1 R ₂ R ₁ R ₀	=	င	No borrow
•	sr2,byte (9	sr2) - byte - 1	0 1 1 0 0 1 0 0 Data	S ₃ 0 1 0 1 S ₂ S ₁ S ₀	4	m	No borrow
5	'A byte (/	A) – byte	0 0 1 1 0 1 1 1	Data	7	2	Borrow
	r,byte (r	(r) — byte	0 1 1 1 0 1 0 0 Data	0 0 1 1 1 R ₂ R ₁ R ₀	1=	က	Borrow
	sr2,byte (s	sr2) – byte	0 1 1 0 0 1 0 0 Data	S ₃ 0 1 1 1 S ₂ S ₁ S ₀	4	9	Borrow
E	*A,byte (/	(A) - byte	0 1 1 0 0 1 1 1	Data	1	2	No zero
	r,byte (r	(r) – byte	0 1 1 1 0 1 0 0	0 1 1 0 1 R ₂ R ₁ R ₀	=	8	No zero

State Stat				Operation Cod	de			
State Sta								
State Stat				180	B2			i
### State S				83	7	State		Skip
st2byte (st2) = byte	Mnemonic	Operand	Operation	6 5 4 3 2 1 0	5 4 3 2 1	(Note 1)	Bytes	Condition
St2byte (st2) = byte	Immediate D	ata (cont)						
Abyte (A) - byte A) - byte	NEI	sr2,byte	(sr2) - byte	1 1 0 0 1 0 0	1 1 0 1 S ₂ S ₁	2	က	No zero
'Abyte (A) - byte (A) - by				Data				,
Tabyte (1) = byte Data D	EOI	*A,byte	1	1 1	,	7	2	oue7
Sr2.byte (sr2) = byte		r,byte	1	1 1 1 0 1 0 0	1 1 1 1 R ₂ R ₁	=	က	Zero
St.2 byte (st2) - byte								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		sr2,byte	(sr2) - byte	1 1 0 0 1 0 0	1 1 1 1 S ₂ S ₁	4	က	Zero
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		•		Data				
T. Dyre (1) \wedge Dyre St. Dyre (5.2) \wedge Dyre St. Dyre (5.2) \wedge Dyre (5.2) \wedge Dyre (5.2) \wedge Dyre Data Data Data St. Dyre (5.2) \wedge Dyre (5.3) \wedge Dyre (5.	NO	*A.bvte		1 0 0 0 1 1	Data	7	2	No zero
St.2-byte (st.2) \times byte St.2-byte St.2-byt		r.byte		1 1 1 0 1 0 0	1 0 0 1 R ₂ R ₁	=	က	No zero
sr2.byte (sr2) A byte 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 Sg 1 0 0 1 Sg 1 Sg		•		Data				
"Abyte (A) ∧ byte		sr2,byte	(sr2) A byte	1 1 0 0 1 0 0	1 0 0 1 S ₂ S ₁	4	ო	No zero
Thyle (A) A byle (B) A byle (B		•		Data				
r.byte (r) \triangle byte	OFFI	A byte	(A) A byte	1 0 1 0 1 1	Data	7	2	Zero
sr2.byte (sr2) \land byte bata wa (A) \leftarrow (A) $+$ ((V)•(wa)) $+$ (CY) \bullet (wa) wa (A) \leftarrow (A) $-$ ((V)•(wa)) $-$ (CY) \bullet (wa) wa (A) \leftarrow (A) $-$ ((V)•(wa)) $-$ (CY) wa (A) \rightarrow (B) \rightarrow (: :	r.byte	(r) A byte	1 1 1 0 1 0 0	1 0 1 1 R ₂ R ₁	=	က	Zero
sr2.byte (sr2) \land byte Data wa (A) \leftarrow (A) $+$ ((V) \bullet (wa)) + (CY) wa (A) \leftarrow (A) $+$ ((V) \bullet (wa)) - (CY) wa (A) \leftarrow (A) $-$ ((V) \bullet (wa)) - (CY) wa (A) \leftarrow (A) $-$ ((V) \bullet (wa)) (Offset wa (A) \leftarrow (A) $-$ ((V) \bullet (wa)) (Offset wa (A) \leftarrow (A) $-$ ((V) \bullet (wa)) (Offset wa (A) \leftarrow (A) $-$ ((V) \bullet (wa)) (Offset wa (A) \leftarrow (A) $-$ ((V) \bullet (wa)) (Offset wa (A) \leftarrow (A) $-$ ((V) \bullet (wa)) (Offset wa (A) \leftarrow (A) $-$ ((V) \bullet (wa)) (Offset Offset wa (A) \leftarrow (A) $-$ ((V) \bullet (wa)) (Offset) Offset				Data				
wa (A) ← (A) + ((V)•(wa)) 0 1 1 1 0 1 0 0 1 1 1 0 1 0 1 0 0 0 0 0		sr2,byte	(sr2) A byte	1 1 0 0 1 0 0	1 0 1 1 S ₂ S ₁	5	က	Zero
wa (A) \leftarrow (A) $+$ ((V)*(wa)) 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0		•		Data				
wa (A) \leftarrow (A) $+$ ((V) \bullet (wa)) 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0	Working Re	aister						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ADDW		$(A) \leftarrow (A) + ((V) \circ (wa))$	1 1 1 0 1 0	0 0 0 0	<u>4</u>	ო	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						7	,	
wa (A) \leftarrow (A) $+$ ((V) \bullet (wa)) 0 1 1 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0	ADCW	wa	$(A) \leftarrow (A) + ((V) \bullet (wa)) + (CY)$	1 1 1 0 1 0 0 Offset	0 0 0 0	<u>4</u>	o	į
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ADDNCW	wa	$(A) \leftarrow (A) + ((V) \bullet (wa))$	1 1 1 0 1 0 0	0 1 0 0 0 0	4	က	No carry
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			((3))	1 1 1 0 1 0	0 0 0	4	3	
wa (A) \leftarrow (A) $-$ ((V) \rightarrow (Wa)) (CY) 0 1 1 0 1 1 0 0 0 14 3 Ma (A) \leftarrow (A) \rightarrow ((V) \rightarrow (Wa)) 0 1 1 0 0 1 0 0 1 0 0 14 3 Ma (A) \leftarrow (A) \leftarrow ((V) \rightarrow (Wa) 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 14 3	SUBW	×	(A) - (A) - (A)	Offset				
$wa (A) \leftarrow (A) - (V) \bullet (wa)) \qquad 0 1 1 1 0 0 1 0 1 0 0$	SBBW	wa	$(A) \leftarrow (A) - ((V) \bullet (wa)) - (CY)$	1 1 1 0 1 0 Offset	1 0 0 0	4	က	
wa $(A) \leftarrow (A) - (V) \bullet (Wa)$ Offset O		1	W A	1 1 0 1 0 0	0 1 1 0 0 0	4	3	No borrow
14 (1) ((V) ((V) ((V) ((V) ((V) ((V) ((V)	SUBNBW	wa	$(A) \leftarrow (A) - ((V) \bullet (Wa))$	Offiset				
	ANAW	wa	(A) ← (A) ∧ ((V)•(wa))	1 0 0	0 0 0 1 0 0	4	က	

NEC

			Operation Code	ın Code			
			5	22			
Mnemonic	Mnemonic Operand	Operation	83 7 6 5 4 3 2 1 0	B4 7 6 5 4 3 2 1 0	State (Note 1)	Bytes	Skip Condition
Working Re	Working Register (cont)						
)RAW	wa	(A) ← (A) V ((V)•(wa))	0 1 1 1 0 1 0 0 Offset	1 0 0 1 1 0 0 0	4	က	
XRAW	wa	(A) ← (A) ← ((V)•(Wa))	0 1 1 1 0 1 0 0 Offset	1 0 0 1 0 0 0 0	4	8	
GTAW	wa	$(A) - ((V) \bullet (Wa)) - 1$	0 1 1 1 0 1 0 0 Offset	1 0 1 0 1 0 0 0	4	က	No borrow
LTAW	wa	(A) — ((V)•(Wa))	0 1 1 1 0 1 0 0 Offset	1 0 1 1 1 0 0 0	4	က	Borrow
NEAW	wa	(A) — ((V)•(wa))	0 1 1 1 0 1 0 0 Offset	1 1 1 0 1 0 0 0	14	က	No zero
EQAW	wa	(A) − ((V)•(wa))	0 1 1 1 1 1 0 0 Offset	1 1 1 1 0 0 0	4	က	Zero
ONAW	wa	(A) ∧ ((V)•(wa))	0 1 1 1 0 1 0 0 Offset	1 1 0 0 1 0 0 0	14	ဗ	No zero
OFFAW	₩	(A) ∧ ((V)•(wa))	0 1 1 1 0 1 0 0 Offset	1 1 0 1 1 0 0 0	42	8	Zero
ANIW	*wa,byte	*wa,byte ((V)•(wa)) ← ((V)•(wa)) ∧ byte	0 0 0 0 0 1 0 1 Data	Offset	19	က	
ORIW	*wa,byte	wa,byte ((V)•(wa)) ← ((V)•(wa)) V byte	0 0 0 1 0 1 0 1 Data	Offset	6	က	
GTIW	*wa,byte	wa,byte ((V)•(wa)) - byte - 1	0 0 1 0 0 1 0 1 Data	Offset	13	က	No borrow
LTIW	*wa,byte	wa,byte ((V)•(wa)) – byte	0 0 1 1 0 1 0 1 Data	Offset	13	3	Воггом
NEIW	*wa,byte	"wa,byte ((V)•(wa)) — byte	0 1 1 0 0 1 0 1 Data	Offset	13	က	No zero
EQIW	*wa,byte	*wa,byte ((V)•(wa)) – byte	0 1 1 1 0 1 0 1 Data	Offset	13	က	Zero
ONIW	*wa,byte	'wa,byte ((V)•(wa)) A byte	0 1 0 0 0 1 0 1 Data	Offset	13	6	No zero
0FFIW	*wa,byte	*wa,byte ((V)*(wa)) A byte	0 1 0 1 0 1 0 1	Offset	13	3	Zero

borrow No borrow No zero No zero Borrow No carry Borrow Borrow Carry Zero ဍ Bytes 2 2 2 2 2 2 2 2 2 2 2 2 2 2 State (Note 1) œ œ 8 8 9 4 9 = = = = F = 11 | = Ξ = ا = =0 P 88888888 В & 20 8 8 B 8 0 ď 4 ď Æ Æ 4 4 4 0 0 N 0 0 0 0 Offset 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 L) 0 0 0 0 0 0 0 0 0 0 Operation Code 0 0 0 0 0 0 æ 0 Æ 0 0 Æ 0 ۵ ا 0 0 0 0 0 0 0 0 0 0 0 മ 0 8 0 0 0 0 0 0 -4 0 0 0 0 0 0 n 0 (EA) ← (EA) ÷ (r2), (r2) ← Remainder Decimal Adjust Accumulator $((V) \bullet (wa)) \leftarrow ((V) \bullet (wa)) + 1$ $((V)\bullet(wa)) \leftarrow ((V)\bullet(wa)) - 1$ € (č (EA) ← (EA) + (rp3) + (CY) (EA) ← (EA) – (rp3) $(EA) \leftarrow (EA) - (rp3)$ $(EA) \leftarrow (EA) + (rp3)$ $(EA) \leftarrow (EA) + (rp3)$ (EA) ← (EA) – (rp3) $(EA) \leftarrow (EA) \land (rp3)$ (EA) ← (EA) V (rp3) (EA) ← (EA) ♥ (rp3) $(EA) \leftarrow (EA) - (r2)$ ← (EA) + (r2) (EA) ← (A) x (r2) (EA) ← (EA) – 1 $(EA) \leftarrow (EA) + 1$ (rp) ← (rp) – 1 $(r2) \leftarrow (r2) + 1$ (rp) ← (rp) + 1 $(r2) \leftarrow (r2) - 1$ (EA) - (rp3) (EA) - (rp3)(EA) — (rp3) (EA) — (rp3) (EA) A (rp3) (EA) A (rp3) Instruction Set (cont) $(CY) \leftarrow 0$ (CY) ← 1 EA,rp3 EA,rp3 EA,rp3 EA,rp3 EA.rp3 ЕА,гр3 EA,rp3 EA,rp3 EA,rp3 EA,rp3 EA,rp3 EA,rp3 EA,rp3 EA,rp3 Operand EA,r2 wa . ¥a 요조 ₽ 언 Increment/Decrement 2 2 면접 Multiply/Divide Mnemonic DSUBNB DADDNC DCRW ESUB DSUB DADC DSBB POFF. INRW DAA ž NOO DAN 등 품 嵩 띮 ž 150

								8	eratio	Operation Code	•-								
		•				ᇣ							28 3						į
Mnemonic	Operand	Operation	7	9	4		8	-		7	9	- 4	4 4 6	~	-	•	State (Note 1)	Bytes	Skip Condition
Others (cont)																			
NEGA		$(A) \leftarrow (\overrightarrow{A}) + 1$	-	<u> </u>	0 0	_	0	0	0	0	0	_	<u>_</u>	0	-	0	80	2	
Rotate and Shift	£																		
3LD		Rotate left digit (A ₃₋₀) ← ((HL)) ₇₋₄ , ((HL)) ₇₋₄ ← ((HL)) ₃₋₀ , ((HL)) ₃₋₀ ← (A ₃₋₀)	0	-	0	_	0	0	0	0	0	-	-	0	0	0	11	2	
RRD		Rotate right digit ((HL)) $_{74} \leftarrow (A_{3.0})$, ((HL)) $_{3.0} \leftarrow ((HL))_{7.4}$, (A _{3.0}) $\leftarrow ((HL))_{3.0}$	0	_	0	_	0	0	0	0	0	_	_	0	0	-	17	2	
RLL	12	$(t2_m + 1) \leftarrow (t2_m), (t2_0) \leftarrow (CY),$ $(CY) \leftarrow (t2_7)$	0	-	0 0	_	0	0	0	0	0	-	0	_	Æ	P.	8	2	
R.R	건	$(12_{m} - 1) \leftarrow (12_{m}), (12_{7}) \leftarrow (CY),$ $(CY) \leftarrow (12_{0})$	0	-	0 0	-	0	0	0	0	0	1	1 0	0	Æ	e.	8	2	
SLL	2	$(r2_{m+1}) \leftarrow (r2_{m}), (r2_{0}) \leftarrow 0, (CY) \leftarrow (r2_{7})$	0	-	0 0	_	0	0	0	0	0	1	0	_	æ	ౚ	80	2	
SLR		\leftarrow (r2 _m), (r2 ₇) \leftarrow 0, (CY) \leftarrow	0	_	0	_	0	0	0		0	0	0	0	1	ڇ	80	2	
SLLC	17	$(r2_{m+1}) \leftarrow (r2_{m}), (r2_{0}) \leftarrow 0, (CY) \leftarrow (r2_{7})$	0	_	0	-	0	0	0	0	0	0 0	0	-	Æ	2	æ	2	Carry
SLRC) ← (r2 ₀)	0	1	0 0	-	0	0	0	0	0	0 0	0	0	Æ	&	80	2	Carry
DRLL	EA	$(EA_n + 1) \leftarrow (EA_n)$, $(EA_0) \leftarrow (CY)$, $(CY) \leftarrow (EA_{15})$	0	-	0 0	-	0	0	0	-	0	1 1	0	- 1	0	0	80	2	
DRLR	EA	$(EA_{n-1}) \leftarrow (EA_{n}), (EA_{15}) \leftarrow (CY),$ $(CY) \leftarrow (EA_{0})$	0	_	0	-	0	0	0	-	0	_	0	0	0	0	8	2	
DSCI	EA	$(EA_{n+1}) \leftarrow (EA_{n}), (EA_{0}) \leftarrow 0,$ (CY) $\leftarrow (EA_{15})$	0	-	0	_	0	0	0	-	0	0	0	-	0	0	8	2	
DSLR	EA	$(EA_n - 1) \leftarrow (EA_n), (EA_{15}) \leftarrow 0,$ $(CY) \leftarrow (EA_0)$	0	+	0 0	-	0	0	0	-	0	1 0	0	0	0	0	8	2	
Jump																			
JMP	*word	(PC) ← word	0	_	0 <u> </u>	1 0 High addr	- =	0	0			Low	w addr	=			10	က	
JB B		$(PC_H) \leftarrow (B), (PC_L) \leftarrow (C)$	0	0	-	0	0	0	-								4	-	
5	word	(PC) ← (PC) + 1 + jdisp 1	-	ļ.		흔	- 1dsip(t								9	-	
JR.	*word	(PC) ← (PC) + 2 + jdisp	0	-	0	-	-	-				흔	lsp			1	9	2	
JEA		(PC) ← (EA)	0	_	0	-	0	0	0	0			-	0		0	8	2	
CALL	*word	$((SP) - 1) \leftarrow ((PC) + 3)H$, $((SP) - 2) \leftarrow ((PC) + 3)H$, $(SP) \leftarrow (SP) \leftarrow (SP) \leftarrow (SP)$	0	-	0 3	0 0 High addr	0 5	0				Low	* addr	=			16	က	
CALB		$(30)^{-2}$ $-1) \leftarrow ((PO) + 2)$ $-2) \leftarrow ((PO) + 2)$ $-2) \leftarrow (PO) + 2)$ $-2) \leftarrow (PO) + 2)$ $-2) \leftarrow (PO) + 2$	0	-	0 0	-	0	0	0	0	0	0	-	0	0	-	11	2	

Instruct	ion Se	Instruction Set (cont)					
			Operation Code	n Code			
			E 2	B B 8	State		Skip
Mnemonic Operand	Operand	Operation	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	(Note 1)	Bytes	Condition
Call (cont)							
CALF	*word	$ \begin{array}{l} ((SP)-1) \leftarrow ((PC)+2)H, \\ ((SP)-2) \leftarrow ((PC)+2)L, \\ ((PC)+1) \rightarrow (PC)+2)L, \\ (PC)+2) \rightarrow (PC)+2 \rightarrow (PC)$	0 1 1 1 1	ţa la	<u> </u>	7	
CALT	word	$ \begin{array}{ll} ((SP) - 2) & ((SP) - 1) \\ ((SP) - 2) & ((PC) + 1) \\ (PC_1) & (PC_2) & (PC_4) \\ (SP) & (SP) - 2 \end{array} $	1 0 0 ta		91	-	
SOFTI		$((SP) - 1) \leftarrow (PSW), ((SP) - 2) \leftarrow ((PC) + 1)_{H}, ((SP) - 3) \leftarrow ((PC) + 1)_{L}, (PC) \leftarrow 0000H, (SP) \leftarrow (SP) - 3$	0 1 1 1 0 0 1 0		<u>9</u>	-	
Return					ļ		
RET		$(PC_L) \leftarrow ((SP)), (PC_H) \leftarrow ((SP) + 1)$ $(SP) \leftarrow (SP) + 2$	1 0 1 1 1 0 0 0		۹ ا	-	1000
RETS		$(PC_L) \leftarrow ((SP)), (PC_H) \leftarrow ((SP) + 1)$ $(SP) \leftarrow (SP) + 2, (PC) \leftarrow (PC) + n$	10111001		٤	-	Unconditional
諨		$(PC_L) \leftarrow ((SP)), (PC_H) \leftarrow ((SP) + 1)$ $(PSW) \leftarrow ((SP) + 2), (SP) \leftarrow (SP) + 3$	0 1 1 0 0 0 1 0		2	-	
Skip							
BIT	*bit, wa	Skip if $((V) \bullet (wa))$ bit = 1	0 1 0 1 1 B ₂ B ₁ B ₀	Offset	و	2	Bit lest
SK	-	Skip if f = 1	0 1 0 0	0 0 0 1 F ₂ F ₁	æ c	7	
SKN	+	Skip if $f = 0$	0 1 0	0 0 1 1 12 11	0 0	7	0 1
SKIT	Ξ	Skip if irf = 1, then reset irf	0 1 0 0	1 0 14 13 12 11	æ c	7 6	- c
SKNIT	Ŧ	Skip if irf = 0 Reset irf if irf = 1 and don't skip	0 1 0 0 1 0 0 0	0 1 1 14 13 12 11 10		7	
CPU Control			- 1		-		
NOP		No operation	0 0 0		4	- .	
1		Enable interrupt	1 0 1 0 1 0 1 0		4	- -	
_		Disable interrupt	1 1 0 1		4 6	-	
Ŧ		Set HALT mode	1 0 0 1 0 0	- · - ·	7 5	7 6	
STOP		Set STOP mode	0 1 0 0 1 0 0 0	1 0 1 1 1 0 1	2	7	