
К501КН2П, КР501КН2

16-ти входовый кодовый ключ, тип логики: МОП-структуры (р-канальные). Содержит 441 интегральный элемент.

Корпус прямоугольный пластмассовый 209.24-3 и 2130.24-1, масса не более 3,6 г.

Выводы: общий — 12; — $\text{Uи}\Pi_1$ — 24; $\text{Uи}\Pi_2$ — 23. Напряжение источника питания: $\text{Uu}\Pi_1$ = —12 $\text{B}\pm10\%$; $\text{Uu}\Pi_2$ = —27 $\text{B}\pm10\%$.

Электрические параметры

Входное напряжение низкого уровня	> -2 B
Входное напряжение высокого уровня	<-8,5 B
Выходное напряжение низкого уровня	> -1 B
Выходное напряжение высокого уровня	<-9,5 B
Напряжение помехи, не более	1,0 B
Входной ток высокого уровня	< 0.4 MKA (< 1.8 MKA)*
Ток потребления Іпот ₁ , не более	4,2 мА
Ток потребления Іпот2, не более	4,2 мА
Мощность потребления, не более	180 мВт
Время задержки сигнала	< 2 mkc
Время перехода микросхемы из состояния «0» в состояние «1»	< 3,5 мкс
Время перехода микросхемы из состояния «1» в состояние «0»	< 1 MKC (< 4 MKC)*

Коэффициент разветвления	30
Емкость выводов ($f = 125 \ \kappa \Gamma \mu$) :	
1	15 пФ
2, 5, 10, 14	5 пФ
3, 4, 6-9, 15-21	4 пФ
11	8 пФ
22	11 пФ

^{*} по некоторым источникам

Предельно допустимые электрические режимы эксплуатации

r r	
Напряжение положительной полярности на любом выводе, не более	0,3B
Напряжение источника питания:	
Uип ₁ , не менее	—20 B
Uип ₂ , не менее	—30 B
Входное напряжение, не менее	—30 B
Выходное напряжение, не менее	—20 B
Лопустимое значение статического потенциала на выволах, не более	30 B

Условия применения

Температура окружающей среды	-45+70 °C
Многократное циклическое изменение температур	-45+70 °C
Относительная влажность воздуха при +25 °C	98%
Синусоидальная вибрация (1-600 Гц)	10 g
Многократные удары с ускорением	75 g
Линейное ускорение	25 g

Допускается применение ИС при токе нагрузки 0,4 мА в состоянии 0» на выходе при изменении выходного напряжения 0» до -2 В. Допускается ток нагрузки до 1 мА в состоянии 0» без регламентации уровня. Допускается выходное напряжение -6,5 В в состоянии 1» при подключении резистора 10 кОм между контролируемым и общим выводами микросхем.