
A761A-5

Транзистор полевой арсенид-галлиевый планарный с затвором в виде барьера Шотки и каналом птипа генераторный. Предназначен для применения в выходных каскадах усилителей мощности и генераторов в составе гибридных интегральных микросхем. Выпускается в виде кристаллов без кристаллодержателя и без выводов. Тип прибора указывается в этикетке. Масса транзистора не более 0,0006 г.

Изготовитель — завод «Пульсар», г. Москва.

Электрические параметры

Выходная мощность на f = 26 ГГц		
при $U_{c \text{num}}^{-}$ 7 В, Рвх $^{-}$ 44,5 мВт, не менее	0,1 Вт	
Коэффициент усиления по мощности на f = 26 ГГц		
при $U_{c num}$ = 7 B, P_{Bx} = 44,5 мВт, не менее	3,5 дБ	
Коэффициент полезного действия стока на f = 26 ГГц		
при $U_{c \text{ num}}$ = 7 B, P_{BX} = 44,5 мВт, не менее	10%	
Коэффициент усиления по мощности в линейной области амплитудной характеристики		
на f =26 ГГц при ($U_{c num}$ = 4 B, P_{BX} = 5 мВт, не менее	5 дБ	
Крутизна характеристики при $U_{cu} = 3 \text{ B}, /_{c} = 50 \text{ мA}, \text{ не менее}$	20 мА/В	
Ток утечки затвора при U _{зи} = -3,5 В, не более	0,2 мА	

Предельные эксплуатационные данные

предельные эксплуатационные данные		
Постоянное напряжение питания стока ¹ при Тк = -60+40 °C		
Постоянная рассеиваемая и средняя рассеиваемая мощность в динамическом режиме ² :		
$T_{\kappa} = -60 + 40 {}^{\circ}\text{C}$		
$T_{\kappa} = +125$ °C	0,4 Вт	
Температура окружающей среды	-60 Tr = $+125$ °C	
¹ При T_{κ} = +40+125 'C U _{спит} .макс = 6 В.		
² При Т _и от +40 до +125 С максимально допустимые рассеиваемые мошности снижаются линейно.		

Технология сборки транзисторов в гибридной схеме, применяемые детали и материалы должны обеспечивать значение теплового сопротивления собранного в гибридную схему транзистора не более +200 °C /BT.

При монтаже транзисторов в составе гибридных схем необходимо выполнять следующие условия: монтаж рекомендуется осуществлять с помощью клея 949-C ТУ ЫУО.028.052. Температура сушки $+120 \pm 10$ °C, время сушки 90 ± 15 мин;

термокомпрессионное присоединение к контактным площадкам истока транзистора рекомендуется осуществлять перемычкой из золотой фольги 3л999,9 размером 0,7*0,4 мм;

присоединение выводов к контактным площадкам рекомендуется производить термокомпрессионной сваркой при температуре $+310 \pm 20$ °C. В качестве вывода должна применяться золотая проволока 3л999,9;

соединение вывода с контактной площадкой должно выдерживать разрывное усилие не менее 0,6 гс; выводы после термокомпрессионной сварки не должны касаться планарной структуры транзистора и боковых ребер кристалла. Не допускается смещение термокомпрессионных точек, приводящее к закорачиванию элементов структуры. Не допускается сильное натяжение и провисание выводов. Не допускается разрыв, пережатие в месте термокомпрессионной сварки. Не допускается затекание клея по периметру кристалла.

После извлечения транзисторов из герметичной или влагозащитной упаковки изготовителя до присоединения выводов к контактным площадкам транзисторы должны находиться в специальной камере с инертной средой не более 10 сут.

При эксплуатации транзисторов в усилительных схемах следует учитывать возможность их самовозбуждения, как высокочастотных элементов, и принимать меры к его устранению.