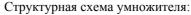
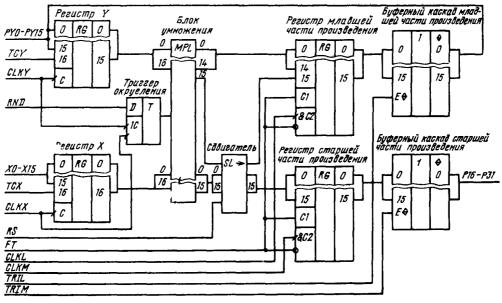
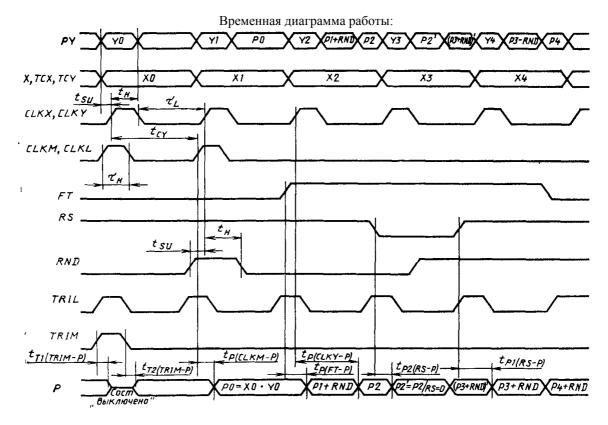
1802BP5, KM1802BP5

Микросхема представляет собой параллельный умножитель 16х16 разрядов, предназначена для построения быстродействующих процессоров цифровой обработки сигналов, реализующих алгоритмы быстрого преобразования Фурье, цифровую фильтрацию и т. п. Возможно применение также в специализированных и универсальных цифровых ЭВМ.


Корпус типа 2136.64-1 (КМ1802BP5) и 4209.68-1 (1802BP5). Содержит 15906 интегральных элементов. Выполнена по ЭСЛ-технологии с ТТЛШ-обрамлением.


Каждый из операндов может быть либо кодом (числом без знака), либо числом со знаком. В последнем случае операнд представляется в дополнительном коде. Числа могут быть как целыми, так и меньшими 1.

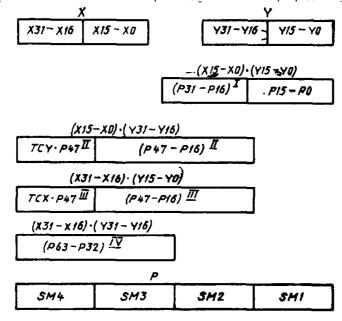

На выходе умножителя вырабатывается произведение двойной точности (32 разряда), которое может быть округлено до 16 разрядов (включая знаковый разряд). При умножении чисел со знаком в дополнительном коде произведение получается в дополнительном коде.

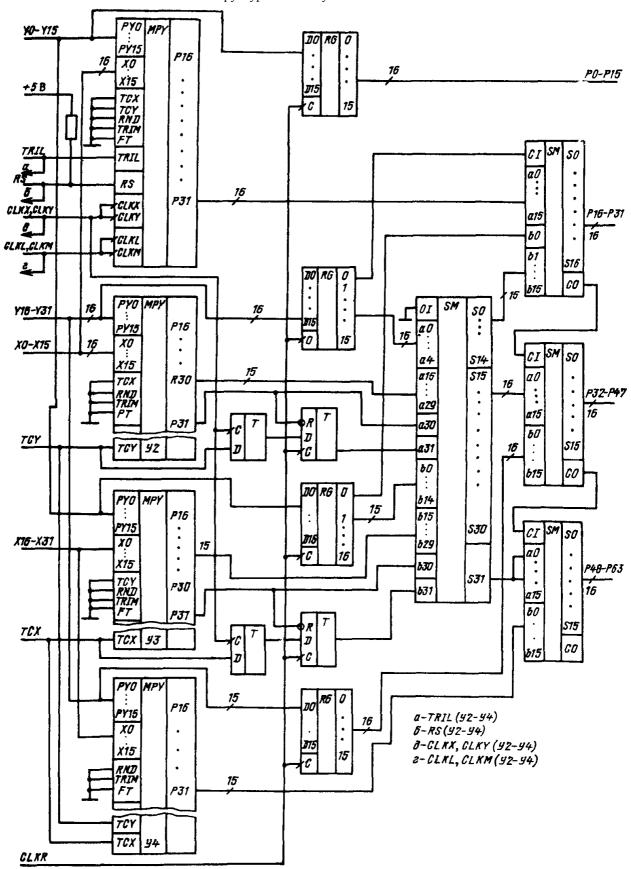
При действиях над числами со знаком предусмотрена возможность присвоения знака произведения младшей части произведения.

	Вывод	Обозначение	Тип вывода	Функциональное иазначение выводов
P31 40 P30 39 P29 38 P28 37	1-5, 54-64 6	X4—X0.	Входы Вход Вход Вход	Множимое, разряды 4—0, 15—5 Управление выходными буферными каскадами младшей частн произведения Синхронизация регистра младшей части произведения Синхронизация регистра множителя
P27 36 P26 35 P25 34 P24 33 P23 32 P22 31	11—24 25—40 41 42	P16—P31 CLKM TRIM	Выходы/ входы Выходы Вход Вход	Произведение/миожитель, разряды 0—15 Произведение, разряды 16—31 Синхронизация регистра старшей части произведения Управление выходными буферными каскадами старшей части произведения
P21 30 P20 29 P19 28 P18 27 P17 26 P16 25	44 45—47 48, 49 50 51	FT GND Ucc TCY TCX RND	Вход — Вход Вход Вход	Управление сдвигом вправо стар- шей части произведения Управление «прозрачиостью» реги- стров произведения Общий Напряжение питания +5 В Знак весового коэффициента стар- шего разряда множителя Знак весового коэффициента стар- шего разряда миожимого Округление Синхронизация регистра множи-
	P30 39 P29 38 P28 37 P27 36 P26 35 P25 34 P24 33 P23 32 P22 31 P21 30 P20 29 P19 28 P19 27 P18 27 P16 25	1-5, 54-64 FJI 40 6 6 730 39 7 729 38 7 728 37 8 7 726 725 727 716 726 727 716 726 727 716 727 716 727 728 729 7	1-5, X4-X0, X15-X5 TRIL P30	Вывод Обозначение Вывода 1-5,

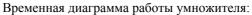
Микросхема включает в себя: регистр множимого (регистр X), регистр множителя (регистр Y), триггер округления, блок умножения, сдвигатель, регистры младшей и старшей частей произведения н выходные буферные каскады младшей и старшей частей произведения.

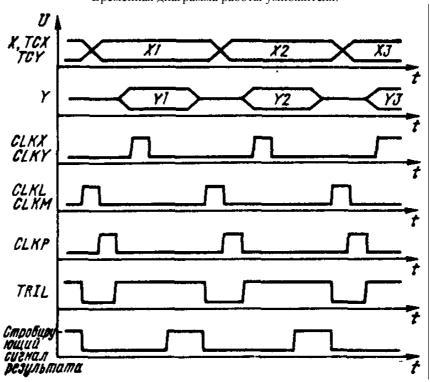
Регистры X и Y выполнены на D-триггерах с одним тактирующим входом. Запись в них осуществляется по фронту сигналов CLKX и CLKY соответственно. Помимо 16 разрядов сомножителей в регистры X к Y заносятся признаки множимого и множителя TCX и TCY, которые имеют значение 1, если данный сомножитель — число со знаком, и 0, если сомножитель — число без знака. Другими словами, TCX и TCY — знаки весового коэффициента старшего разряда числа: при значении 1 — минус, при 0 — плюс.

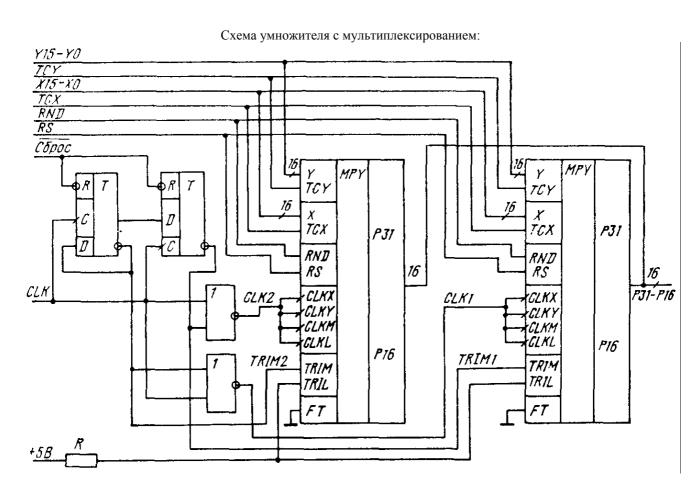

По фронту одного из сигналов CLKY или CLKX в триггер округления записывается сигнал RND, по которому производится округление произведения до 16 разрядов в случае RND=1.


Выходные буферные каскады управляются сигналами TRIL (младшая часть произведения) и TRIM (старшая часть). Каскады находятся в выключенном (третьем) состоянии, когда управляющий сигнал равен 1.

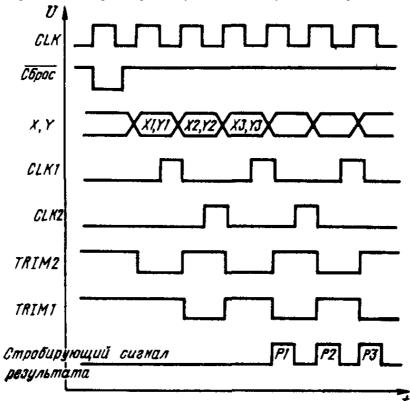
Для уменьшения числа используемых выводов БИС разряды младшей части произведения заведены на шину множителя Y, которая является двунаправленной.


Функционирование микросхемы КМ1802ВР5 аналогично КМ1802ВР4.


Взаимное расположение частичных произведений в 32х32-разрядном умножителе:



Наличие регистров на выходе LSP умножителей и триггеров T, запоминающих значения TCX и TCY, позволяет уменьшить цикл перемножения (умножение в БИС УМ и сложение предыдущих частичных произведений в сумматорах проводятся одновременно).



			Значення параметров	
Параметр	Обозначение	Мнн	макс.	
Выходное напряжение низкого уровня, В, при $U_{cc}=$	U_{OL}	_	0,5	
$=4,75$ В и $I_{OL}=4$ мА Выходное напряжение высокого уровня, В, при $U_{CC}=4,75$ В и $I_{OH}=0,4$ мА	U_{OH}	2,4		
Ток потребления, мА, при $U_{CC} = 5,25$ В	I_{CC}		800	
Входной ток низкого уровня, м A , при $U_{cc}\!=\!5,\!25~\mathrm{B}$ и $U_{IL}\!=\!0,\!5~\mathrm{B}$, для:	I_{IL}			
выводов 1—5, 9—24, 44, 50—52, 54—64		-0,4	-	
выводов 6, 7, 41—43, 53		-1,0		
вывода 8	*	-2,0		
Входной ток высокого уровня, мк A , при $U_{cc} = 5,25$ В и $U_{IH} = 5,25$ В, для	I_{IH}		75	
выводов 1—5, 44, 50—52, 54—64			175	
выводов 9—24, 6, 7, 41—43, 53			150	
вывода 8 Выходной ток высокого уровня в состоянии «выключено», мкА, при $U_{CC} = 5,25$ В и $U_{OH} = 5,25$ В	I _{OZH}	-	100	
Выходной ток низкого уровня в состоянии «выключено», мк A , при U_{cc} = 5,25 B и U_{oL} = 0,5 B	I_{OZL}	-100		
Время задержки распространення сигнала от входов CLKY, CLKX до выходов P, не	$t_{P\ (CLKY-P)}$		175	
Время задержки распространения сигнала от входа <i>CLKM</i> до выходов <i>P</i> , не	$t_{P\ (CLKM-P)}$	-	35	
Время задержки перехола от входа <i>TRIM</i> до выходов <i>P,</i> нс	$t_{TI\ (TRIM-P)}, \ t_{T2\ (TRIM-P)}$		35	
Время задержки перехода от входа TRIL до выходов РУ, нс	$t_{TI} (TRIL-PY),$ $t_{T2} (TRIL-PY)$		35	
Время задержки распространения сигнала от входа <i>CLKL</i> до выходов <i>PY</i> , ис	$t_{P(CLKL-PY)}$	-	35	
Время задержки распространення сигнала от входа RS до выходов P с округлением произведения, ис	$t_{P1(RS-P)}$	-	165	
Время задержки распространения сигнала от входа RS до выходов P без округления произведения, нс	$t_{P2(RS-P)}$	-	60	
Длительность сигнала высокого уровня на входах <i>CLKX</i> , <i>CLKY</i> , <i>CLKM</i> , <i>CLKL</i> , нс	$ au_H$	30	_	
Длительность сигнала высокого уровня на входах <i>CLKX</i> , <i>CLKY</i> , <i>CLKM</i> , <i>CLKL</i> , нс	$ au_L$	30	-	
Время установления сигнала на входах X, TCX, Y, TCY и RND относительно сигналов на входах CLKX, CLKY, нс	$t_{\mathrm SU}$	0	-30	
Время сохранения сигнала на входах X, TCX, Y, TCY н RND относительно сигналов на входах CLKX, CLKY, нс	t_H		10	
) (
Время задержки распространения сигнала от входа <i>FT</i> до	t _{P (FTP)}		100	
выходов произведения, нс Время установления сигнала на входах <i>CLKX</i> , <i>CLKY</i> отно- сительно снгнала на входах <i>CLKM</i> , <i>CLKY</i> (время цнкла), нс	T_C	_	-140	

Основные параметры микросхемы 1802ВР5:

Время задержки распространения от входа до в	выхода 175 нс
Время операции «умножение»	225 нс
Ток потребления	990 мА
Выходное напряжение низкого уровня	< 0,5 B
Выходное напряжение высокого уровня	> 2,4 B
Входное напряжение низкого уровня	< 0,8 B
Входное напряжение высокого уровня	> 2,0 B
Выходной ток низкого уровня	< 10 MA
Диапазон температур окружающей среды	-60+125 °C
Срок сохраняемости	25 лет
Минимальная наработка	100 000 ч

